[1] |
NANNIPIERI P, TRASAR-CEPEDA C, DICK R P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis [J]. Biol Fertil Soil, 2018, 54(1): 11 − 19. |
[2] |
XU Zhiwei, YU Guirui, ZHANG Xinyu, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 2017, 104(1): 152 − 163. |
[3] |
ZHAO Fazhu, REN Chengjie, HAN Xinhui, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems [J]. For Ecol Manage, 2018, 427: 289 − 295. |
[4] |
BAI Junhong, YU Zibo, YU Lu, et al. In-situ organic phosphorus mineralization in sediments in coastal wetlands with different flooding periods in the Yellow River Delta, China [J]. Sci Total Environ, 2019, 682: 417 − 425. |
[5] |
GAO Yang, MAO Liang, MIAO Chiyuan, et al. Spatial characteristics of soil enzyme activities and microbial community structure under different land uses in Chongming Island, China: geostatistical modelling and PCR-RAPD method [J]. Sci Total Environ, 2010, 408(16): 3251 − 3260. |
[6] |
MAHARJAN M, SANAULLAH M, RAZAVI B S, et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils [J]. Appl Soil Ecol, 2017, 113: 22 − 28. |
[7] |
宁沐蕾,高唤唤,黄天颖,等. 崇明岛土地利用方式对土壤酶活性的影响[J]. 生态学杂志, 2017, 36(7): 1949 − 1956.
NING Mulei, GAO Huanhuan, HUANG Tianying, et al. Effects of land use patterns on soil enzyme activity in Chongming Island [J]. Chin J Ecol, 2017, 36(7): 1949 − 1956. |
[8] |
KANG Hongzhang, GAO Huanhuan, YU Wenjuan, et al. Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island [J]. Sci Total Environ, 2018, 625: 1423 − 1432. |
[9] |
王树起,韩晓增,乔云发,等. 不同土地利用方式对三江平原湿地土壤酶分布特征及相关肥力因子的影响[J]. 水土保持学报, 2007, 21(4): 150 − 153, 192.
WANG Shuqi, HAN Xiaozeng, QIAO Yunfa, et al. Characteristics of soil enzyme activity and fertility under different types of land use in wetland of Sanjiang Plain [J]. J Soil and Water Conserv, 2007, 21(4): 150 − 153, 192. |
[10] |
任勃,杨刚,谢永宏,等. 洞庭湖区不同土地利用方式对土壤酶活性的影响[J]. 生态与农村环境学报, 2009, 25(4): 8 − 11.
REN Bo, YANG Gang, XIE Yonghong, et al. Effects of land use patterns on enzyme activity in soils in the Dongting Lake area [J]. J Ecol Rural Environ, 2009, 25(4): 8 − 11. |
[11] |
刘云鹏,申卫博,张社奇,等. 黄河中游湿地土壤养分与酶活性特征及相关性研究[J]. 草地学报, 2013, 21(3): 474 − 478, 484.
LIU Yunpeng, SHEN Weibo, ZHANG Sheqi, et al. Characteristics and correlation analysis of soil nutrient and enzyme activities of the middle Yellow River wetland [J]. Acta Agrestia Sin, 2013, 21(3): 474 − 478, 484. |
[12] |
刘琛,丁能飞,郭彬,等. 不同土地利用方式下围垦海涂微生物群落和土壤酶特征[J]. 土壤通报, 2013, 44(1): 99 − 105.
LIU Chen, DING Nengfei, GUO Bin, et al. Characteristics of microbial community structure and enzyme activities in reclaimed saline soil region under different land use types [J]. Chin J Soil Sci, 2013, 44(1): 99 − 105. |
[13] |
NOURBAKHSH F, MONREAL C. Urease activity as affected by cultivation and soil depth: a kinetic approach [J]. Agrochimica, 2006, 50(1): 72 − 76. |
[14] |
LOEPPMANN S, BLAGODATSKAYA E, JOHANNA P, et al. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere [J]. Soil Biol Biochem, 2016, 92: 111 − 118. |
[15] |
FARRELL R, VADAKATTU G, GERMIDA J J. Effects of cultivation on the activity and kinetics of arylsulfatase in Saskatchewan soils [J]. Soil Biol Biochem, 1994, 26(8): 1033 − 1040. |
[16] |
ROBARTS R D, ZHULISOV A V, PAVLOV D F. The state of knowledge about wetlands and their future under aspects of global climate change: the situation in Russia [J]. Aquat Sci, 2013, 75(1): 27 − 38. |
[17] |
FINLAYSON M, DAVIS J, GELL P, et al. The status of wetlands and the predicted effects of global climate change: the situation in Australia [J]. Aquat Sci, 2013, 75(1): 1 − 12. |
[18] |
阮子学. 土地利用变化对土壤反硝化和氨化相对重要性的影响[D]. 南京: 南京林业大学, 2018.
RUAN Zixue. The Relative Importance and Mechanism of Soil Dissimilatory Nitratereduction to Ammonium and Denitrification under the Change of Land Use: A Case Study in Chongming Dongtan[D]. Nanjing : Nanjing Forest University, 2018. |
[19] |
STEMMER M, GERZABEKI M H, KANDELER E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication [J]. Soil Biol Biochem, 1997, 30(1): 9 − 17. |
[20] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
[21] |
李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. |
[22] |
范弟武,徐莎,周曼丽,等. Cd2+和Cr3+对崇明东滩湿地土壤碱性磷酸酶的低剂量兴奋效应[J]. 生态与农村环境学报, 2016, 32(2): 320 − 325.
FAN Diwu, XU Sha, ZHOU Manli, et al. Low-dose hormetic effects of Cd2+ and Cr3+ on alkaline phosphatase in wetland soil in Dongtan of Chongming [J]. J Ecol Rural Environ, 2016, 32(2): 320 − 325. |
[23] |
杨文彬,耿玉清,王冬梅. 漓江水陆交错带不同植被类型的土壤酶活性[J]. 生态学报, 2015, 35(14): 4604 − 4612.
YANG Wenbin, GENG Yuqing, WANG Dongmei. The activities of soil enzyme under different vegetation types in Li River riparian ecotones [J]. Acta Ecol Sin, 2015, 35(14): 4604 − 4612. |
[24] |
HUANG Lidong, ZHANG Yaohong, SHI Yiming, et al. Comparison of phosphorus fractions and phosphatase activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve, China [J]. Estuarine Coast Shelf Sci, 2015, 157: 93 − 98. |
[25] |
黄莉. 微生物对鄱阳湖湿地不同围垦时间及土地利用类型的响应[D]. 南昌: 江西师范大学, 2013.
HUANG Li. Response of Microorganism to Different Reclamation Time and Land Use Type of Poyang Lake Wetland[D]. Nanchang: Jiangxi Normal University, 2013. |
[26] |
靳振江. 耕作和长期施肥对稻田土壤微生物群落结构及活性的影响[D]. 南京: 南京农业大学, 2013.
JIN Zhenjiang. Effects of Tillage and Long-term Fertilization on Soil Microbial Community Structure and Activity in Paddy Fields[D]. Nanjing: Nanjing Agricultural University, 2013. |
[27] |
白雪娟,曾全超,安韶山,等. 子午岭人工林土壤微生物生物量及酶活性[J]. 应用生态学报, 2018, 29(8): 2695 − 2704.
BAI Xuejuan, ZENG Quanchao, AN Shaoshan, et al. Soil microbial biomass and enzyme activities among different artificial forests in Ziwuling [J]. Chin Appl Ecol, 2018, 29(8): 2695 − 2704. |
[28] |
GERMAN D P, MARCELO K R B, STONE M, et al. The Michaelis-menten kinetics of soil extracellular enzymes in response to temperature: a cros-latitudinal study [J]. Glob Change Biol, 2012, 18(4): 1468 − 1479. |
[29] |
WALLENSTEIN M D, WEINTRAUB M N. Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes [J]. Soil Biol Biochem, 2008, 40(9): 2098 − 2106. |
[30] |
GERMAN D P, WEINTRAUBb M N, GRANDY A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies [J]. Soil Biol Biochem, 2011, 43(7): 1387 − 1397. |
[31] |
邱莉萍,王益权,刘军,等. 旱地长期培肥土壤脲酶和碱性磷酸酶动力学及热力学特征研究[J]. 植物营养与肥料学报, 2007, 13(6): 1028 − 1034.
QIU Liping, WANG Yiquan, LIU Jun, et al. The dynamic and thermodynamic characteristics of soil reactions catalyzed by soil enzymes under long-term fertilization in Loess Plateau [J]. Plant Nut Fert Sci, 2007, 13(6): 1028 − 1034. |
[32] |
邵文山,李国旗. 土壤酶功能及测定方法研究进展[J]. 北方园艺, 2016(9): 188 − 193.
SHAO Wenshan, LI Guoqi. Research progress of soil enzymes function and its determination method [J]. Northern Hortic, 2016(9): 188 − 193. |
[33] |
李小炜,卜耀军. 黄土高原撂荒川地植被演替及土壤性质分析[J]. 陕西师范大学学报(自然科学版), 2018, 46(4): 83 − 90.
LI Xiaowei, BU Yaojun. The vegetation succession and soil properties of abandoned valley land in the Loess Plateau [J]. J Shaanxi Norm Univ Nat Sci Ed, 2018, 46(4): 83 − 90. |
[34] |
刘存歧. 河口潮滩湿地沉积物中胞外酶研究[D]. 上海: 华东师范大学, 2003.
LIU Cunqi. Studies on Extracellular Enzymes in Sediments of Tidal Flat Wetland in Estuary[D]. Shanghai: East China Normal University, 2003. |
[35] |
李艳丽,王磊,张文佺,等. 互花米草控制技术对湿地土壤有机碳保留能力与微生物活性的影响[J]. 农业环境科学学报, 2009, 28(7): 1529 − 1534.
LI Yanli, WANG Lei, ZHANG Wenquan, et al. Effect of Spartina alterniflora controlling technologies on organic carbon sequestration and microbial activities in wetland soil [J]. J Agro-Environt Sci, 2009, 28(7): 1529 − 1534. |
[36] |
张骁栋. 互花米草与蟹类扰动对崇明东滩植物种间关系及生地化循环的影响[D]. 上海: 复旦大学, 2012.
ZHANG Xiaodong. Effects of Spartina Alterniflora and Crab Disturbance on the Relationship between Plant Species and Biogeochemical Cycle in East Chongming Beach[D]. Shanghai: Fudan University, 2012. |
[37] |
李文华,邵学新,吴明,等. 杭州湾潮滩湿地土壤碱性磷酸酶活性分布及其与磷形态的关系[J]. 环境科学学报, 2013, 33(12): 3341 − 3349.
LI Wenhua, SHAO Xuexin, WU Ming, et al. Soil alkaline phosphatase activity and its relationship with phosphorus forms of Hangzhou Bay Intertidal Wetland [J]. Acta Sci Circumst, 2013, 33(12): 3341 − 3349. |
[38] |
TISCHER A, BLAGODATSKAYA E, HAMER U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions [J]. Soil Biol Biochem, 2015, 89: 226 − 237. |
[39] |
KHALILI B, NOURBAKHSH F, NILI N, et al. Diversity of soil cellulase isoenzymes is associated with soil cellulase kinetic and thermodynamic parameters [J]. Soil Biol Biochem, 2011, 43(8): 1639 − 1648. |
[40] |
KNIGHT T R, DICK R P. Differentiating microbial and stabilized beta-glucosidase activity relative to soil quality [J]. Soil Biol Biochem, 2004, 36(12): 2089 − 2096. |
[41] |
孔龙,谭向平,和文祥,等. 黄土高原沟壑区宅基地复垦土壤酶动力学研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 123 − 129.
KONG Long, TAN Xiangping, HE Wenxiang, et al. Enzyme kinetics characteristics of soil in the reclaimed homestead land on Loess Plateau [J]. J Northwest A&F Univ Nat Sci Ed, 2013, 41(2): 123 − 129. |
[42] |
隽英华,陈利军,武志杰,等. 苯基磷酰二胺对土壤脲酶的抑制作用动力学研究[J]. 浙江大学学报(农业与生命科学版), 2008, 34(4): 431 − 438.
JUN Yinghua, CHEN Lijun, WU Zhijie, et al. Kinetics of soil urease affected by phenyl phosphorodiamidate [J]. J Zhejiang Univ Agric Life Sci, 2008, 34(4): 431 − 438. |
[43] |
JUAN Yinghua, CHEN Zhenhua, CHEN Lijie, et al. Kinetics of soil urease in four agricultural soils affected by urease inhibitor PPD at contrasting moisture regimes [J]. Commun Soil Sci Plant Anal, 2014, 45(17): 2268 − 2276. |