[1] MEHTÄTALO L, de MIGUEL S, GREGOIRE T G. Modeling height-diameter curves for prediction [J]. Can J For Res, 2015, 45(7): 826 − 837. doi:  10.1139/cjfr-2015-0054
[2] 李春明, 李利学. 基于非线性混合模型的栓皮栎树高与胸径关系研究[J]. 北京林业大学学报, 2009, 31(4): 7 − 12. doi:  10.3321/j.issn:1000-1522.2009.04.002

LI Chunming, LI Lixue. Height-diameter relationship for Quercus variabilis Blume plantations based on nonlinear mixed model [J]. J Beijing For Univ, 2009, 31(4): 7 − 12. doi:  10.3321/j.issn:1000-1522.2009.04.002
[3] 张连金, 孙长忠, 辛学兵, 等. 北京九龙山不同林分树高与胸径相关生长关系分析[J]. 中南林业科技大学学报, 2014, 34(12): 66 − 70. doi:  10.3969/j.issn.1673-923X.2014.12.013

ZHANG Lianjin, SUN Changzhong, XIN Xuebing, et al. Allometric relationship between height and diameter at breast height of different stand in Beijing Jiulong Mountain [J]. J Cent South Univ For Technol, 2014, 34(12): 66 − 70. doi:  10.3969/j.issn.1673-923X.2014.12.013
[4] CHAI Zongzheng, TAN Wei, LI Yuanyuan, et al. Generalized nonlinear height-diameter models for a Cryptomeria fortunei plantation in the Pingba region of Guizhou Province, China [J]. Web Ecol, 2018, 18(1): 29 − 35. doi:  10.5194/we-18-29-2018
[5] 童洁, 石玉立. 加格达奇3种森林类型树高-胸径的曲线拟合[J]. 东北林业大学学报, 2017, 45(2): 6 − 11, 21. doi:  10.3969/j.issn.1000-5382.2017.02.002

DONG Jie, SHI Yuli. Tree height-diameter model in Jiagedaqi [J]. J Northeast For Univ, 2017, 45(2): 6 − 11, 21. doi:  10.3969/j.issn.1000-5382.2017.02.002
[6] 王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30 − 36.

WANG Dongzhi, ZHANG Dongyan, ZHANG Zhidong, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model [J]. Sci Silv Sin, 2016, 52(1): 30 − 36.
[7] 卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高-胸径模型[J]. 北京林业大学学报, 2015, 37(11): 10 − 25.

LU Jun, ZHANG Huiru, LEI Xiangdong, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains [J]. J Beijing For Univ, 2015, 37(11): 10 − 25.
[8] 刘鑫, 王海燕, 雷相东, 等. 基于BP神经网络的天然云冷杉针阔混交林标准树高-胸径模型[J]. 林业科学研究, 2017, 30(3): 368 − 375.

LIU Xin, WANG Haiyan, LEI Xiangdong, et al. Generalized height-diameter model for natural mixed spruce-fir coniferous and broadleaf forests based on BP neural network [J]. For Res, 2017, 30(3): 368 − 375.
[9] 董云飞, 孙玉军, 王轶夫, 等. 基于BP神经网络的杉木标准树高曲线[J]. 东北林业大学学报, 2014, 42(7): 154 − 156, 165. doi:  10.3969/j.issn.1000-5382.2014.07.036

DONG Yunfei, SUN Yujun, WANG Yifu, et al. Generalized height-diameter model for Chinese fir based on BP neural network [J]. J Northeast For Univ, 2014, 42(7): 154 − 156, 165. doi:  10.3969/j.issn.1000-5382.2014.07.036
[10] 沈剑波, 雷相东, 李玉堂, 等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 147 − 154.

SHEN Jianbo, LEI Xiangdong, LI Yutang, et al. Prediction mean height for Larix olgensis plantation based on Bayesian-regularization BP neural network [J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(2): 147 − 154.
[11] 徐步强, 张秋良, 弥宏卓, 等. 基于BP神经网络的油松人工林生长模型[J]. 东北林业大学学报, 2011, 39(12): 33 − 35. doi:  10.3969/j.issn.1000-5382.2011.12.010

XU Buqiang, ZHANG Qinliang, MI Hongzhuo, et al. Growth model of Pinus tabulaeformis plantation based on BP neural network [J]. J Northeast For Univ, 2011, 39(12): 33 − 35. doi:  10.3969/j.issn.1000-5382.2011.12.010
[12] 金星姬, 贾炜玮, 李凤日. 基于BP人工神经网络的兴安落叶松天然林全林分生长模型的研究[J]. 植物研究, 2008, 28(3): 370 − 374, 384. doi:  10.7525/j.issn.1673-5102.2008.03.025

JIN Xingji, JIA Weiwei, LI Fengri. Whole stand growth model for natural Dahurian larch forests based on BP ANN [J]. Bull Bot Res, 2008, 28(3): 370 − 374, 384. doi:  10.7525/j.issn.1673-5102.2008.03.025
[13] 刘建忠, 余娜. 贵州省马尾松林地质量空间评价与低效林防控措施研究[J]. 湖北农业科学, 2016, 55(20): 5202 − 5206.

LIU Jianzhong, YU Na. Quality spatial evaluation of Pinus massoniana and control measures of low-efficiency forest in Guizhou Province [J]. Hubei Agric Sci, 2016, 55(20): 5202 − 5206.
[14] 何婧, 韦小丽, 徐海. 贵州省马尾松林分树种多样性分析[J]. 西部林业科学, 2016, 45(3): 26 − 29, 37.

HE Jing, WEI Xiaoli, XU Hai. Tree species diversity of Pinus massoniana forest in Guizhou Province [J]. J West China For Sci, 2016, 45(3): 26 − 29, 37.
[15] 王科, 谭伟, 戚玉娇. 近自然经营间伐对黔中马尾松天然次生纯林生长的初期效应[J]. 浙江农林大学学报, 2019, 36(5): 886 − 893.

WANG Ke, TAN Wei, QI Yujiao. Initial effects of close-to-nature thinning on a natural secondary Pinus massoniana pure forest in central Guizhou [J]. J Zhejiang A&F Univ, 2019, 36(5): 886 − 893.
[16] 浦瑞良, 宫鹏, YANG R. 应用神经网络和多元回归技术预测森林产量[J]. 应用生态学报, 1999, 10(2): 129 − 134. doi:  10.3321/j.issn:1001-9332.1999.02.001

PU Ruiliang, GONG Peng, YANG R. Forest yield prediction with an artificial neural network and multiple regression [J]. Chin J Appl Ecol, 1999, 10(2): 129 − 134. doi:  10.3321/j.issn:1001-9332.1999.02.001
[17] PESCHEL W. Mathematical methods for growth studies of trees and forest stands and the results of their application [J]. Tharandter Forstl Jahrb, 1938, 89: 169 − 247.
[18] CURTIS R O. Height-diameter and height-diameter age equations for second-growth Douglas fir [J]. For Sci, 1967, 13(4): 365 − 375.
[19] PEARL R, REED L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation [J]. Proc Nati Acad Sci, 1920, 6(6): 275 − 288. doi:  10.1073/pnas.6.6.275
[20] WEIBULL W. A statistical distribution function of wide applicability [J]. J Appl Mech, 1951, 18(3): 293 − 297.
[21] GOMPERZ B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies [J]. Phil Trans Roy Soc London, 1832, 115: 513 − 585.
[22] LUNDQVIST B. On the height growth in cultivated stands of pine and spruce in Northern Sweden [J]. Medd Fran Statens Skogsforskningsinst, 1957, 47(2): 1 − 64.
[23] 张立明. 人工神经网络的模型及其应用[M]. 上海: 复旦大学出版社, 1993: 43 − 46.
[24] 罗恒春, 张超, 魏安超, 等. 云南松林分平均胸径生长模型及模型参数环境解释[J]. 浙江农林大学学报, 2018, 35(6): 1079 − 1087. doi:  10.11833/j.issn.2095-0756.2018.06.011

LUO Hengchun, ZHANG Chao, WEI Anchao, et al. Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China [J]. J Zhejiang A&F Univ, 2018, 35(6): 1079 − 1087. doi:  10.11833/j.issn.2095-0756.2018.06.011
[25] HUANG S S, TITUS S J, WIENS D P. Comparison of nonlinear height-diameter functions for major Alberta tree species [J]. Can J For Res, 1992, 22(9): 1297 − 1304. doi:  10.1139/x92-172
[26] GUPTA A, SRIVASTAVA R, JABEEN N, et al. Height estimation model for Eucalyptus tereticornis grown under semiarid conditions of India [J]. Indian J Agrofor, 2008, 10(2): 34 − 39.
[27] KALBI S, FALLAH A, BETTINGER P, et al. Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests [J]. J For Res, 2018, 29(5): 1195 − 1204. doi:  10.1007/s11676-017-0551-z
[28] SHARMA R P, VACEK Z, VACEK S, et al. Modelling individual tree height-diameter relationships for multi-layered and multi-species forestsin central Europe [J]. Trees, 2019, 33(1): 103 − 119. doi:  10.1007/s00468-018-1762-4
[29] 黄旭光, 周俊朝, 黄柏华, 等. 基于人工神经网络对栎树天然林地位指数模拟系统的研究[J]. 河南农业大学学报, 2015, 49(2): 190 − 194.

HUANG Xuguang, ZHOU Junchao, HUANG Bohua, et al. Study of oak growth dynamic simulation system based on artificial neural network [J]. J Henan Agric Univ, 2015, 49(2): 190 − 194.
[30] 徐志扬. 基于BP神经网络的马尾松树高曲线模型[J]. 林业调查规划, 2015, 40(2): 6 − 8, 73. doi:  10.3969/j.issn.1671-3168.2015.02.002

XU Zhiyang. Height-diameter model for Pinus massoniana based on BP neural network [J]. For Inventory Plann, 2015, 40(2): 6 − 8, 73. doi:  10.3969/j.issn.1671-3168.2015.02.002
[31] 杜志, 甘世书. 基于BP神经网络的杉木和马尾松树高曲线模型研究[J]. 中南林业调查规划, 2017, 36(4): 36 − 39.

DU Zhi, GAN Shishu. Height-diameter models for Cunninghamia lanceolata and Pinus massoniana based on BP neural network [J]. Cent South For Inventory Plann, 2017, 36(4): 36 − 39.
[32] 王轶夫, 孙玉军, 郭孝玉. 基于BP神经网络的马尾松立木生物量模型研究[J]. 北京林业大学学报, 2013, 35(2): 17 − 21.

WANG Yifu, SUN Yujun, GUO Xiaoyu. Single-tree biomass modeling of Pinus massoniana based on BP neural network [J]. J Beijing For Univ, 2013, 35(2): 17 − 21.
[33] AHMADI K, ALAVI S J, TABARI M, et al. Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests, Iran [J]. Biotechnol Agron Soc Environ, 2013, 17(3): 431 − 40.
[34] 苏崇宇, 汪毓铎. 基于改进的自适应遗传算法优化BP神经网络[J]. 工业控制计算机, 2019, 32(1): 67 − 69. doi:  10.3969/j.issn.1001-182X.2019.01.027

SU Chongyu, WANG Yuduo. BP neural network optimized by improved adaptive genetic algorithm computer engineering and applications [J]. Ind Control Comput, 2019, 32(1): 67 − 69. doi:  10.3969/j.issn.1001-182X.2019.01.027
[35] 李松, 刘力军, 翟曼. 改进粒子群算法优化BP神经网络的短时交通流预测[J]. 系统工程理论与实践, 2012, 32(9): 2045 − 2049. doi:  10.3969/j.issn.1000-6788.2012.09.024

LI Song, LIU Lijun, ZHAI Man. Prediction for short-term traffic flow based on modified PSO optimized BP neural net work [J]. Syst Eng-Theory Pract, 2012, 32(9): 2045 − 2049. doi:  10.3969/j.issn.1000-6788.2012.09.024