[1] |
DING Wenli, CONG Wenfeng, LAMBERS H. Plant phosphorus-acquisition and -use strategies affect soil carbon cycling [J]. Trends in Ecology &Evolution, 2021, 36(10): 899 − 906. |
[2] |
ACHAT D L, AUGUSTO L, GALLET-BUDYNEK A, et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review [J]. Biogeochemistry, 2016, 131(1/2): 173 − 202. |
[3] |
ACOSTA-MARTINEZ V, CANO A, JOHNSON J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices [J]. Applied Soil Ecology, 2018, 126: 121 − 128. |
[4] |
LUO Ling, MENG Han, GU Jidong. Microbial extracellular enzymes in biogeochemical cycling of ecosystems [J]. Journal of Environmental Management, 2017, 197: 539 − 549. |
[5] |
AMEUR D, ZEHETNER F, JOHNEN S, et al. Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes [J]. Pedobiologia, 2018, 69: 1 − 10. |
[6] |
ATTADEMO A M, SANCHEZ-HERNANDEZ J C, LAJMANOVICH R C, et al. Enzyme activities as indicators of soil quality: response to intensive soybean and rice crops [J/OL]. Water, Air, & Soil Pollution, 2021, 232: 295[2022-09-20]. doi:10.1007/s11270-021-05211-2. |
[7] |
CHEN Xin, LUO Min, LIU Yuxiu, et al. Linking carbon-degrading enzyme activity to microbial carbon-use trophic strategy under salinization in a subtropical tidal wetland [J/OL]. Applied Soil Ecology, 2022, 174: 11[2022-09-20]. doi:10.1016/J.APSOIL.2022.104421. |
[8] |
CENINI V L, FORNARA D A, MCMULLAN G, et al. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils [J]. Soil Biology and Biochemistry, 2016, 96: 198 − 206. |
[9] |
AKHTAR K, WANG Weiya, KHAN A, et al. Straw mulching with fertilizer nitrogen: an approach for improving crop yield, soil nutrients and enzyme activities [J]. Soil Use and Management, 2019, 35(3): 526 − 535. |
[10] |
ZHANG Pingjiu, LI Lianqing, PAN Genxing, et al. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China [J]. Environmental Geology, 2006, 51(4): 609 − 619. |
[11] |
ALLISON S D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments [J]. Ecology Letter, 2005, 8(6): 626 − 635. |
[12] |
CUI Yongxing, WANG Xia, WANG Xiangxiang, et al. Evaluation methods of heavy metal pollution in soils based on enzyme activities: a review [J]. Soil Ecology Letters, 2021, 3(3): 169 − 177. |
[13] |
de BARROS J A, de MEDEIROS E V, da COSTA D P, et al. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils [J/OL]. Archives of Agronomy and Soil Science, 2019[2022-09-20]. doi: 10.1080/03650340.2019.1622095. |
[14] |
BASTIDA F, SELEVSEK N, TORRES I F, et al. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes [J/OL]. Scientific Reports, 2015, 5[2022-09-20]. doi: 10.1038/srep15550. |
[15] |
GRANDY A S, STRICKLAND M S, LAUBER C L, et al. The influence of microbial communities, management, and soil texture on soil organic matter chemistry [J]. Geoderma, 2009, 150(3/4): 278-286. |
[16] |
HENDRIKSEN N B, CREAMER R E, STONE D, et al. Soil exo-enzyme activities across Europe-the influence of climate, land-use and soil properties [J]. Applied Soil Ecology, 2016, 97: 44 − 48. |
[17] |
ANANBEH H, STOJANOVIC M, POMPEIANO A, et al. Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems [J/OL]. Science of the Total Environment, 2019, 694: 133692[2022-09-20]. doi. org/10.1016/j. scitotenv. 2019.133692. |
[18] |
FINZI A C, AUSTIN A T, CLELAND E E, et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems [J]. Frontiers in Ecology and the Environment, 2011, 9(1): 61 − 67. |
[19] |
XIAO Wen, CHEN Xiao, JING Xin, et al. A meta-analysis of soil extracellular enzyme activities in response to global change [J]. Soil Biol Biochem, 2018, 123: 21 − 32. |
[20] |
CHEN Ji, LUO Yiqi, VAN GROENIGEN K J, et al. A keystone microbial enzyme for nitrogen control of soil carbon storage [J/OL]. Science Advances, 2018, 4(8): 1689[2022-09-20]. doi: 10.1126/sciadv.aaq1689. |
[21] |
LEE S H, KIM M S, KIM J G, et al. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management [J/OL]. Sustainability, 2020, 12(19): 8209[2022-09-20]. doi: 10.3390/su12198209. |
[22] |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale [J]. Ecology Letters, 2008, 11: 1252 − 1264. |
[23] |
ZHOU Luhong, LIU Shangshi, SHEN Haihua, et al. Soil extracellular enzyme activity and stoichiometry in China’s forests [J]. Functional Ecology, 2020, 34(7): 1461 − 1471. |
[24] |
PENG Xiaoqian, WANG Wei. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China [J]. Soil Biology and Biochemistry, 2016, 98: 74 − 84. |
[25] |
XU Zhiwei, YU Guirui, ZHANG Xinyu, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biology and Biochemistry, 2017, 104: 152 − 163. |
[26] |
ZHANG Qian, FENG Jiao, WU Junjun, et al. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China [J]. Land Degradation Development, 2019, 30(4): 459 − 469. |
[27] |
FUHRMAN J A. Microbial community structure and its functional implications [J]. Nature, 2009, 459: 193 − 199. |
[28] |
BURKE R M, CAIRNEY J W G. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi [J]. Mycorrhiza, 2002, 12: 105 − 116. |
[29] |
ASGHAR W, KATAOKA R. Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil [J]. Archives of Microbiology, 2021, 203: 4281 − 4291. |
[30] |
BALUME I, AGUMAS B, MUSYOKI M, et al. Potential proteolytic enzyme activities modulate archaeal and bacterial nitrifier abundance in soils differing in acidity and organic residue treatment [J/OL]. Applied Soil Ecology, 2022, 169: 104188[2022-09-20]. doi: 10.1016/j.apsoil.2021.104188. |
[31] |
GHORBANI-NASRABADI R, GREINER R, ALIKHANI H A, et al. Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity [J]. Journal Soil Science and Plant Nutrition, 2013, 13(1): 223 − 236. |
[32] |
CALDWELL B A. Enzyme activities as a component of soil biodiversity: a review [J]. Pedobiologia, 2005, 49(6): 637 − 644. |
[33] |
KELLNER H, LUIS P, SCHLITT B, et al. Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil [J]. Soil Bioogyl Biochemistry, 2009, 41(7): 1380 − 1389. |
[34] |
LUIS P, WALTHER G, KELLNER H, et al. Diversity of laccase genes from basidiomycetes in a forest soil [J]. Soil Biology and Biochemistry, 2004, 36(7): 1025 − 1036. |
[35] |
LI Minghao, HE Wei, GU Jidong. Enhanced plant-microbe remediation of PCBs in soil using enzyme modification technique combined with molecular docking and molecular dynamics [J]. Biochemical Journal, 2021, 478(10): 1921 − 1941. |
[36] |
NANNIPIERI P, GIAGNONI L, RENELLA G, et al. Soil enzymology: classical and molecular approaches [J]. Biology and Fertility of Soils, 2012, 48: 743 − 762. |
[37] |
BRACKIN R, ROBINSON N, LAKSHMANAN P, et al. Microbial function in adjacent subtropical forest and agricultural soil [J]. Soil Biology and Biochemistry, 2013, 57: 68 − 77. |
[38] |
王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展[J]. 土壤, 2016, 48(1): 12 − 21.
WANG Lide, WANG Fanglin, GUO Chunxiu, et al. Review: progress of soil enzymology [J]. Soils, 2016, 48(1): 12 − 21. |
[39] |
RYE C S, WITHERS S G. Glycosidase mechanisms [J]. Current Opinion in Chemical Biology, 2000, 4(5): 573 − 580. |
[40] |
SINSABAUGH R L. Phenoloxidase, peroxidase and organic matter dynamics of soil [J]. Soil Biology and Biochemistry, 2010, 42(3): 391 − 404. |
[41] |
BAI Xuejuan, DIPPOLD M A, AN Shaoshan, et al. Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition [J/OL]. Ecological Indicators, 2021, 121: 107200[2022-09-20]. doi: 10.1016/j.ecolind.2020.107200. |
[42] |
ADETUNJI A T, LEWU F B, MULIDZI R, et al. The biological activities of beta-glucosidase, phosphatase and urease as soil quality indicators: a review [J]. Journal Soil Science Plant Nutrition, 2017, 17(3): 794 − 807. |
[43] |
SCHIMEL J, BECERRA C A, BLANKINSHIP J. Estimating decay dynamics for enzyme activities in soils from different ecosystems [J]. Soil Biology and Biochemistry, 2017, 114: 5 − 11. |
[44] |
SZINSABAUGH R S. Enzymic analysis of microbial pattern and process [J]. Biology and Fertility of Soils, 1994, 17: 69 − 74. |
[45] |
EKENLER M, TABATABAI M A. β-glucosaminidase activity as an index of nitrogen mineralization in soils [J]. Communications in Soil Science and Plant Analysis, 2004, 35(7/8): 1081 − 1094. |
[46] |
FUJITA K, MIYABARA Y, KUNITO T. Microbial biomass and ecoenzymatic stoichiometries vary in response to nutrient availability in an arable soil [J]. European Journal of Soil Biology, 2019, 91: 1 − 8. |
[47] |
PENTON C R, NEWMAN S. Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida Everglades [J]. Journal of Environment Quality, 2008, 37(3): 972 − 976. |
[48] |
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse [J]. Biogeochemistry, 2011, 102: 31 − 43. |
[49] |
KANTE M, RIAH W, CLIQUET J B, et al. Soil enzyme activity and stoichiometry: linking soil microorganism resource requirement and legume carbon rhizodeposition [J/OL]. Agronomyl, 2021, 11(11): 2131[2022-09-20]. doi: 10.3390/agronomy11112131. |
[50] |
SINSABAUGH R L, FOLLSTAD SHAH J J, HILL B H, et al. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils [J]. Biogeochemistry, 2012, 111(1/3): 455 − 467. |
[51] |
CHEN Ruirui, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories [J/OL]. Global Change Biology, 2014, 20[2022-09-20]. doi: 10.1111/gcb.12475. |
[52] |
WANG Jipeng, WU Yanhong, LI Jingji, et al. Soil enzyme stoichiometry is tightly linked to microbial community composition in successional ecosystems after glacier retreat [J/OL]. Soil Biology Biochemistry, 2021, 162: 108429[2022-09-20]. doi: 10.1016/j.soilbio.2021.108429. |
[53] |
WARING B G, WEINTRAUB S R, SINSABAUGH R L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils [J]. Biogeochemistry, 2014, 117(1): 101 − 113. |
[54] |
MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics [J]. Soil Biology and Biochemistry, 2016, 93: 1 − 7. |
[55] |
MORI T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? [J/OL]. Soil Biology and Biochemistry, 2020, 146: 107816[2022-09-20]. doi: 10.1016/j.soilbio.2020.107816. |
[56] |
CUI Yongxing, MOORHEAD D L, GUO Xiaobin, et al. Stoichiometric models of microbial metabolic limitation in soil systems [J]. Global Ecology and Biogeography, 2021, 30(11): 2297 − 2311. |
[57] |
WANG Congyan, LÜ Yanna, LIU Xueyan, et al. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity [J]. Journal of Forestry Research, 2013, 24(1): 109 − 114. |
[58] |
DONG Chengcheng, WANG Wei, LIU Hongyan, et al. Comparison of soil microbial responses to nitrogen addition between ex-arable grassland and natural grassland [J]. Journal of Soils and Sediments, 2021, 21(3): 1371 − 1384. |
[59] |
CHEN Ji, VAN GROENIGEN K J, HUNGATE B A, et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems [J]. Global Change Biology, 2020, 26(9): 5077 − 5086. |
[60] |
勒佳佳, 苏原, 彭庆文, 等. 氮添加对天山高寒草原土壤酶活性和酶化学计量特征的影响[J]. 干旱区研究, 2020, 37(2): 382 − 389.
LE Jiajia, SU Yuan, PENG Qingwen, et al. Effects of nitrogen addition on soil enzyme activities and ecoenzymatic stoichiometry in alpine grassland of the Tianshan Mountains [J]. Arid Zone Research, 2020, 37(2): 382 − 389. |
[61] |
VOURLITIS G L, KIRBY K, VALLEJO I, et al. Potential soil extracellular enzyme activity is altered by long-term experimental nitrogen deposition in semiarid shrublands [J/OL]. Applied Soil Ecology, 2021, 158: 103779[2022-09-20]. doi: 10.1016/j.apsoil.2020.103779. |
[62] |
YAN Bangguo, SUN Yi, HE Guangxiong, et al. Nitrogen enrichment affects soil enzymatic stoichiometry via soil acidification in arid and hot land [J/OL]. Pedobiologia, 2020, 81/82: 150663[2022-09-20]. doi: 10.1016/j.pedobi.2020.150663. |
[63] |
JING Xin, CHEN Xiao, TANG Mao, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests [J]. Science of the Total Environment, 2017, 607: 806 − 815. |
[64] |
MA Suhui, CHEN Guoping, TANG Wenguang, et al. Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropical forests [J]. Plant and Soil, 2021, 460(1): 453 − 468. |
[65] |
TURNER B L, WRIGHT S J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest [J]. Biogeochemistry, 2014, 117(1): 115 − 130. |
[66] |
JING Xin, CHEN Xiao, FANG Jingyun, et al. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems [J/OL]. Soil Biology and Biochemistry, 2020, 141: 107657[2022-09-20]. doi:10.1016/j.soilbio.2019.107657. |
[67] |
MENGE D N L, PACALA S W, HEDIN L O. Emergence and maintenance of nutrient limitation over multiple timescales in terrestrial ecosystems [J]. American Naturalist, 2009, 173(2): 164 − 175. |
[68] |
MORI T, LU Xiankai, AOYAGI R, et al. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests [J]. Functional Ecology, 2018, 32(5): 1145 − 1154. |
[69] |
CAMENZIND T, HATTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests [J]. Ecological Monographs, 2018, 88(1): 4 − 21. |
[70] |
ULLAH S, AI Chao, HUANG Shaohui, et al. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil [J/OL]. PLoS One, 2019, 14(9): e0223026[2022-09-20]. doi: 10.1371/journal.pone.0223026. |
[71] |
MA Wenjun, LI Jian, GAO Ying, et al. Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem [J/OL]. Science of the Total Environment, 2020, 703: 134691[2022-09-20]. doi: 10.1016/j.scitotenv.2019.134691. |
[72] |
WANG Ruzhen, CAO Yanzhuo, WANG Hongyi, et al. Exogenous P compounds differentially interacted with N availability to regulate enzymatic activities in a meadow steppe [J]. European Journal of Soil Science, 2020, 71(4): 667 − 680. |
[73] |
CHEN Hao, LI Dejun, ZHAO Jie, et al. Nitrogen addition aggravates microbial carbon limitation: evidence from ecoenzymatic stoichiometry [J]. Geoderma, 2018, 329: 61 − 64. |
[74] |
XU Hongwei, QU Qing, LI Guanwen, et al. Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation [J/OL]. Soil Biology and Biochemistry, 2022, 170: 108714[2022-09-20]. doi: 10.1016/J.SOILBIO.2022.108714. |
[75] |
YUAN Xiaobo, NIU Decao, GHERARDI L A, et al. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment [J/OL]. Soil Biology and Biochemistry, 2019, 138: 107580[2022-09-20]. doi: 10.1016/j.soilbio.2019.107580. |
[76] |
LIU Meihua, GAN Bingping, LI Quan, et al. Effects of nitrogen and phosphorus addition on soil extracellular enzyme activity and stoichiometry in Chinese Fir (Cunninghamia lanceolata) forests [J/OL]. Frontiers in Plant Science, 2022, 13: 834184[2022-09-20]. doi: 10.3389/FPLS.2022.834184. |
[77] |
TATARIW C, MACRAE J D, FERNANDEZ I J, et al. Chronic nitrogen enrichment at the watershed scale does not enhance microbial phosphorus limitation [J]. Ecosystems, 2018, 21(1): 178 − 189. |
[78] |
GOMEZ E J, DELGADO J A, GONZALEZ J M. Persistence of microbial extracellular enzymes in soils under different temperatures and water availabilities [J]. Ecology and Evolution, 2020, 10(18): 10167 − 10176. |
[79] |
SHAW A N, CLEVELAND C C. The effects of temperature on soil phosphorus availability and phosphatase enzyme activities: a cross-ecosystem study from the tropics to the Arctic [J]. Biogeochemistry, 2020, 151(2): 113 − 125. |
[80] |
ZHOU Xiaoqi, CHEN Chengrong, WANG Yanfen, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland [J]. Science of the Total Environment, 2013, 444: 552 − 558. |
[81] |
刘珊杉, 周文君, 况露辉, 等. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262 − 1272.
LIU Shanshan, ZHOU Wenjun, KUANG Luhui, et al. Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest [J]. Chinese Journal of Plant Ecology, 2020, 44(12): 1262 − 1272. |
[82] |
KRISHNAN A, CONVEY P, GONZALEZ M, et al. Effects of temperature on extracellular hydrolase enzymes from soil microfungi [J]. Polar Biology, 2018, 41(3): 537 − 551. |
[83] |
MENG Cheng, TIAN Dashuan, ZENG Hui, et al. Global meta-analysis on the responses of soil extracellular enzyme activities to warming [J/OL]. Science of the Total Environment, 2020, 705: 135992[2022-09-20]. doi: 10.1016/j.scitotenv.2019.135992. |
[84] |
CHEN Xiao, FENG Jiguang, DING Zongju, et al. Changes in soil total, microbial and enzymatic C-N-P contents and stoichiometry with depth and latitude in forest ecosystems [J/OL]. Science of the Total Environment, 2022, 816: 151583[2022-09-20]. doi: 10.1016/J.SCITOTENV.2021.151583. |
[85] |
OLAGOKE F K, KAISER K, MIKUTTA R, et al. Persistent activities of extracellular enzymes adsorbed to soil minerals [J/OL]. Microorganisms, 2020, 8(11): 1796[2022-09-20]. doi: 10.3390/microorganisms8111796. |
[86] |
CHEN Ji, LUO Yiqi, GARCIA-PALACIOS P, et al. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration [J]. Global Change Biology, 2018, 24(10): 4816 − 4826. |
[87] |
ZHENG Haifeng, LIU Yang, CHEN Yamei, et al. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau [J/OL]. Geoderma, 2020, 360: 113985[2022-09-20]. doi: 10.1016/j.geoderma.2019.113985. |
[88] |
GUAN Pingting, YANG Jingjing, YANG Yurong, et al. Land conversion from cropland to grassland alleviates climate warming effects on nutrient limitation: Evidence from soil enzymatic activity and stoichiometry [J/OL]. Global Ecology and Conservation, 2020, 24: e01328[2022-10-20]. doi: 10.1016/j.gecco.2020.e01328. |
[89] |
WANG Qitong, CHEN Lanying, XU Hang, et al. The effects of warming on root exudation and associated soil N transformation depend on soil nutrient availability [J/OL]. Rhizosphere, 2021, 17: 100263[2022-09-20]. doi: 10.1016/j.rhisph.2020.100263. |
[90] |
FANG Xiong, ZHOU Guoyi, LI Yuelin, et al. Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest [J]. Biology and Fertility of Soils, 2016, 52(3): 353 − 365. |
[91] |
LI Huayong, TIAN Haixia, WANG Ziquan, et al. Potential effect of warming on soil microbial nutrient limitations as determined by enzymatic stoichiometry in the farmland from different climate zones [J/OL]. Science of the Total Environment, 2022, 802: 149657[2022-09-20]. doi: 10.1016/J.SCITOTENV.2021.149657. |
[92] |
LIE Zhiyang, LIN Wei, HUANG Wenjuan, et al. Warming changes soil N and P supplies in model tropical forests [J]. Biology and Fertility of Soils, 2019, 55(7): 751 − 763. |
[93] |
MONTIEL-GONZALEZ C, TAPIA-TORRES Y, SOUZA V, et al. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert [J/OL]. PeerJ, 2017, 5(11): e4007[2022-09-20]. doi: 10.7717/peerj.4007. |
[94] |
ZHANG Shuohong, PAN Ying, ZHOU Zhenghu, et al. Resource limitation and modeled microbial metabolism along an elevation gradient [J/OL]. Catena, 2022, 209: 105807[2022-09-20]. doi: 10.1016/J.CATENA.2021.105807. |
[95] |
SIMPSON R M, MASON K, ROBERTSON K, et al. Relationship between soil properties and enzyme activities with soil water repellency [J]. Soil Research, 2019, 57(6): 689 − 702. |
[96] |
LI Xingfu, ZHANG Ying, DING Chengxiang, et al. Water addition promotes vegetation recovery of degraded alpine meadows by regulating soil enzyme activity and nutrients in the Qinghai-Tibetan Plateau [J/OL]. Ecological Engineering, 2020, 158: 106047[2022-09-20]. doi: 10.1016/j.ecoleng.2020.106047. |
[97] |
AKINYEMI D S, ZHU Yankun, ZHAO Mengying, et al. Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia [J/OL]. Global Ecology and Conservation, 2020, 23: e01175[2022-09-20]. doi: 10.1016/j.gecco.2020.e01175. |
[98] |
刘雄, 罗超, 向元彬, 等. 模拟降水量变化对华西雨屏区天然常绿阔叶林土壤酶活性的影响[J]. 应用与环境生物学报, 2020, 26(3): 635 − 642.
LIU Xiong, LUO Chao, XIANG Yuanbin, et al. Effects of simulated precipitation changes on soil enzyme activities in a natural, evergreen, broad-leaf forest in the rainy area of western China [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(3): 635 − 642. |
[99] |
柴锦隆, 徐长林, 张德罡, 等. 模拟践踏和降水对高寒草甸土壤养分和酶活性的影响[J]. 生态学报, 2019, 39(1): 333 − 344.
CHAI Jinlong, XU Changlin, ZHANG Degang, et al. Effects of simulated trampling and rainfall on soil nutrients and enzyme activity in an alpine meadow [J]. Acta Ecologica Sinica, 2019, 39(1): 333 − 344. |
[100] |
CUI Yongxing, FANG Linchuan, DENG Lei, et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region [J]. Science of the Total Environment, 2019, 658: 1440 − 1451. |
[101] |
LI Jiwei, XIE Jiangbo, ZHANG Yu, et al. Interactive effects of nitrogen and water addition on soil microbial resource limitation in a temperate desert shrubland [J]. Plant and Soil, 2022, 475(1): 361 − 378. |
[102] |
LADWIG L M, SINSABAUGH R L, COLLINS S L, et al. Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils [J]. Ecosphere, 2015, 6(3): 1 − 10. |
[103] |
LI Jiwei, DONG Lingbo, LIU Yulin, et al. Soil organic carbon variation determined by biogeographic patterns of microbial carbon and nutrient limitations across a 3, 000- km humidity gradient in China [J/OL]. Catena, 2022, 209(2): 13[2022-09-20]. doi: 10.1016/J.CATENA.2021.105849. |
[104] |
ROMERO-OLIVARES A L, ALLISON S D, TRESEDER K K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies [J]. Soil Biology and Biochemistry, 2017, 107: 32 − 40. |
[105] |
KEANE J B, HOOSBEEK M R, TAYLOR C R, et al. Soil C, N and P cycling enzyme responses to nutrient limitation under elevated CO2 [J]. Biogeochemistry, 2020, 151(2): 221 − 235. |
[106] |
FINZI A C, SINSABAUGH R L, LONG T M, et al. Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest [J]. Ecosystems, 2006, 9(2): 215 − 226. |
[107] |
FANG Huajun, CHENG Shulan, LIN Erda, et al. Elevated atmospheric carbon dioxide concentration stimulates soil microbial activity and impacts water-extractable organic carbon in an agricultural soil [J]. Biogeochemistry, 2015, 122(2): 253 − 267. |
[108] |
STEINWEG J M, DUKES J S, PAUL E A, et al. Microbial responses to multi-factor climate change: effects on soil enzymes [J/OL]. Frontiers in Microbiology, 2013, 4: 146[2022-09-20]. doi: 10.3389/fmicb.2013.00146. |
[109] |
PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation [J]. Ecology Letters, 2011, 14(2): 187 − 194. |
[110] |
OCHOA-HUESO R, HUGHES J, DELGADO-BAQUERIZO M, et al. Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland [J]. Plant and Soil, 2017, 416(1/2): 283 − 295. |
[111] |
MEIER I C, PRITCHARD S G, BRZOSTEK E R, et al. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2 [J]. New Phytologist, 2015, 205(3): 1164 − 1174. |
[112] |
DORODNIKOV M, BLAGODATSKAYA E, BLAGODATSKY S, et al. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size [J]. Global Change Biology, 2009, 15(6): 1603 − 1614. |