| [1] | BOND-LAMBERTY B, BAILEY V L, CHEN Min, et al. Globally rising soil heterotrophic respiration over recent decades [J]. Nature, 2018, 560(7716): 80−83. |
| [2] | BOND-LAMBERTY B, THOMSON A. A global database of soil respiration data [J]. Biogeosciences, 2010, 7(6): 1915−1926. |
| [3] | BOND-LAMBERTY B, WANG Chuankuan, GOWER S T. A global relationship between the heterotrophic and autotrophic components of soil respiration? [J]. Global Change Biology, 2004, 10(10): 1756−1766. |
| [4] | 范志平, 王红, 邓东周, 等. 土壤异养呼吸的测定及其温度敏感性影响因子[J]. 生态学杂志, 2008, 27(7): 1221−1226. FAN Zhiping, WANG Hong, DENG Dongzhou, et al. Measurement methods of soil heterotrophic respiration and key factors affecting the temperature sensitivity of the soil heterotrophic respiration [J]. Chinese Journal of Ecology, 2008, 27(7): 1221−1226. |
| [5] | LIU Jiangnan, HU Junguo, LIU Haoqi, et al. Global soil respiration estimation based on ecological big data and machine learning model[J/OL]. Scientific Reports, 2024, 14: 13231[2024-11-25]. DOI: 10.1038/s41598-024-64235-w. |
| [6] | TANG Xiaolu, DU Jie, SHI Yuehong, et al. Global patterns of soil heterotrophic respiration–a meta-analysis of available dataset[J/OL]. CATENA, 2020, 191: 104574[2024-11-25]. DOI: 10.1016/j.catena.2020.104574. |
| [7] | HE Yue, DING Jinzhi, DORJI T, et al. Observation-based global soil heterotrophic respiration indicates underestimated turnover and sequestration of soil carbon by terrestrial ecosystem models [J]. Global Change Biology, 2022, 28(18): 5547−5559. |
| [8] | YAO Yitong, CIAIS P, VIOVY N, et al. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter-annual variability[J/OL]. Global Biogeochemical Cycles, 2021, 35(8): e2020GB006918[2024-11-25]. DOI: 10.1029/2020GB006918. |
| [9] | CHEN Lin, XING Minfeng, HE Binbin, et al. Estimating soil moisture over winter wheat fields during growing season using machine-learning methods [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3706−3718. |
| [10] | ZHANG Linqi, LIU Yi, REN Liliang, et al. Analysis of flash droughts in China using machine learning [J]. Hydrology and Earth System Sciences, 2022, 26(12): 3241−3261. |
| [11] | 付平凡, 杨晓静, 苏志诚, 等. 基于集成学习的土壤含水量预测研究−以辽西地区为例[J]. 土壤, 2023, 55(3): 671−681. FU Pingfan, YANG Xiaojing, SU Zhicheng, et al. Prediction of soil moisture content based on ensemble learning: a case study of western Liaoning Province [J]. Soils, 2023, 55(3): 671−681. |
| [12] | 李志生, 梁锡冠, 金宇凯, 等. 基于树模型的北京市PM2.5预测效果对比分析[J]. 环境工程, 2021, 39(6): 106−113. LI Zhisheng, LIANG Xiguan, JIN Yukai, et al. A comparative study on edictive effect of PM2.5 in Beijing based on tree models [J]. Environmental Engineering, 2021, 39(6): 106−113. |
| [13] | 朱珈莹, 安俊琳, 冯悦政, 等. 基于轻量级梯度提升机的南京大气臭氧浓度预测[J]. 环境科学, 2023, 44(7): 3685−3694. ZHU Jiaying, AN Junlin, FENG Yuezheng, et al. Atmospheric ozone concentration prediction in Nanjing based on LightGBM [J]. Environmental Science, 2023, 44(7): 3685−3694. |
| [14] | HASHIMOTO S, CARVALHAIS N, ITO A, et al. Global spatiotemporal distribution of soil respiration modeled using a global database [J]. Biogeosciences, 2015, 12(13): 4121−4132. |
| [15] | LU Haibo, LI Shihua, MA Minna, et al. Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models[J/OL]. Environmental Research Letters, 2021, 16(5): 054048[2024-11-25]. DOI: 10.1088/1748-9326/abf526. |
| [16] | 展小云, 于贵瑞, 郑泽梅, 等. 中国区域陆地生态系统土壤呼吸碳排放及其空间格局——基于通量观测的地学统计评估[J]. 地理科学进展, 2012, 31(1): 97−108. ZHAN Xiaoyun, YU Guirui, ZHENG Zemei, et al. Carbon emission and spatial pattern of soil respiration of terrestrial ecosystems in China: based on geostatistic estimation of flux measurement [J]. Progress in Geography, 2012, 31(1): 97−108. |
| [17] | HARRIS I, JONES P D, OSBORN T J, et al. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset [J]. International Journal of Climatology, 2014, 34(3): 623−642. |
| [18] | 焦鑫宇, 龙梅, 刘志雄. 历史地理信息系统视角下野生蕙兰时空分布及其影响因素[J]. 浙江农林大学学报, 2023, 40(6): 1261−1272. JIAO Xinyu, LONG Mei, LIU Zhixiong. Spatiotemporal distribution and influencing factors of wild Cymbidium faberi from the perspective of historical geographic information system [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1261−1272. |
| [19] | BUONTEMPO C, BURGESS S N, DEE D, et al. The Copernicus climate change service: climate science in action [J]. Bulletin of the American Meteorological Society, 2022, 103(12): E2669−E2687. |
| [20] | NACHTERGAELE F, van VELTHUIZEN H, VERELST L, et al. Harmonized World Soil Database Version 2.0[M]. Rome and Laxenburg: FAO, 2023. |
| [21] | 黄昇. 基于多源数据与人工智能算法的湖南省森林地上生物量估算[D]. 长沙: 中南林业科技大学, 2023. HUANG Sheng. Above-ground Biomass Estimation in Hunan Province Based on Multi-source Data and Artificial Intelligence Algorithms[D]. Changsha: Central South University of Forestry & Technology, 2023. |
| [22] | WANG Hao, SHAO Wei, HU Yunfeng, et al. Assessment of six machine learning methods for predicting gross primary productivity in grassland[J/OL]. Remote Sensing, 2023, 15(14): 3475[2024-11-25]. DOI: 10.3390/rs15143475. |
| [23] | GUO Xu, GUI Xiaofan, XIONG Hanxiang, et al. Critical role of climate factors for groundwater potential mapping in arid regions: insights from random forest, XGBoost, and LightGBM algorithms[J/OL]. Journal of Hydrology, 2023, 621: 129599[2024-11-25]. DOI: 10.1016/j.jhydrol.2023.129599. |
| [24] | 陈涵, 张超, 余树全. 基于Stacking模型集成算法的莲都区南方红豆杉潜在分布区[J]. 浙江农林大学学报, 2019, 36(3): 494−500. CHEN Han, ZHANG Chao, YU Shuquan. Potential distribution area of Taxus chinensis var. mairei in Liandu District based on a Stacking algorithm [J]. Journal of Zhejiang A&F University, 2019, 36(3): 494−500. |
| [25] | 晏红波, 梁雨豪, 卢献健, 等. 基于XGBoost融合多维度时空数据的干旱遥感建模及应用研究[J]. 地球信息科学学报, 2024, 26(6): 1531−1546. YAN Hongbo, LIANG Yuhao, LU Xianjian, et al. Remote sensing modeling and applications in drought monitoring based on XGBoost and fusion of multi-dimensional spatiotemporal data [J]. Journal of Geo-Information Science, 2024, 26(6): 1531−1546. |
| [26] | KE Guolin, MENG Qi, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[C]//von LUXBURG U, GUYON I. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc. , 2017: 3149−3157. |
| [27] | 付佳龙. 基于LightGBM模型的径流预报研究[D]. 武汉: 华中科技大学, 2022. FU Jialong. Research on Runoff Forecast Based on LightGBM Model[D]. Wuhan: Huazhong University of Science and Technology, 2022. |
| [28] | 咸阳, 宋江辉, 王金刚, 等. 基于环境变量筛选与机器学习的土壤养分含量空间插值研究[J]. 农业机械学报, 2024, 55(10): 379−391. XIAN Yang, SONG Jianghui, WANG Jingang, et al. Spatial interpolation of soil nutrients content based on environmental variables screening and machine learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(10): 379−391. |
| [29] | LU Ruhua, ZHANG Pei, FU Zhaopeng, et al. Improving the spatial and temporal estimation of ecosystem respiration using multi-source data and machine learning methods in a rainfed winter wheat cropland[J/OL]. Science of the Total Environment, 2023, 871: 161967[2024-11-25]. DOI: 10.1016/j.scitotenv.2023.161967. |
| [30] | 张梅, 黄贤金, 揣小伟, 等. 中国净生态系统生产力空间分布及变化趋势研究[J]. 地理与地理信息科学, 2020, 36(2): 69−74. ZHANG Mei, HUANG Xianjin, CHUAI Xiaowei, et al. Spatial distribution and changing trends of net ecosystem productivity in China [J]. Geography and Geo-Information Science, 2020, 36(2): 69−74. |
| [31] | 谢薇, 陈书涛, 胡正华. 中国陆地生态系统土壤异养呼吸变异的影响因素[J]. 环境科学, 2014, 35(1): 334−340. XIE Wei, CHEN Shutao, HU Zhenghua. Factors influencing the variability in soil heterotrophic respiration from terrestrial ecosystem in China [J]. Environmental Science, 2014, 35(1): 334−340. |
| [32] | HAN Guangxuan, ZHOU Guangsheng, XU Zhenzhu, et al. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem [J]. Soil Biology and Biochemistry, 2007, 39(2): 418−425. |
| [33] | PAN Qilong, HARROU F, SUN Ying. A comparison of machine learning methods for ozone pollution prediction [J/OL]. Journal of Big Data, 2023, 10(1): 63[2024-11-25]. DOI:10.1186/s40537-023-00748-x. |