[1] SANTUCCI L, CAROL E, TANJAL C. Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina) [J]. Chemosphere, 2018, 206: 727 − 735.
[2] YASEEN Z M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: review, challenges and solutions [J/OL]. Chemosphere, 2021, 277: 130126[2022-07-25]. doi: 10.1016/j.chemosphere.2021.130126.
[3] SHEN Xing, DAI Min, YANG Jiawei, et al. A critical review on the phytoremediation of heavy metals from environment: performance and challenges [J/OL]. Chemosphere, 2022, 291: 132979[2022-07-25]. doi: 10.1016/j.chemosphere.2021.132979.
[4] 周杨, 周文斌, 马嘉伟, 等. 缙云县某复垦地块土壤环境质量调查及生态风险评价[J]. 浙江农林大学学报, 2022, 39(2): 388 − 395.

ZHOU Yang, ZHOU Wenbin, MA Jiawei, et al. Soil environmental quality investigation and ecological risk assessment of a reclamation land in Jinyun County [J]. Journal of Zhejiang A&F University, 2022, 39(2): 388 − 395.
[5] KUMAR V, SHARMA A, KAUR P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art [J]. Chemosphere, 2019, 216: 449 − 462.
[6] LIU Shaoheng, ZENG Guangming, NIU Qiuya, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review [J]. Bioresource Technology, 2017, 224: 25 − 33.
[7] LIN Hua, ZHANG Xuehong, CHEN Jun, et al. Phytoremediation potential of Leersia hexandra Swartz of copper contaminated soil and its enhancement by using agronomic management practices [J]. Ecological Engineering, 2019, 127: 561 − 566.
[8] SIDHU G P S, BALI A S, SINGH H P, et al. Insights into the tolerance and phytoremediation potential of Coronopus didymus L. (Sm) grown under zinc stress [J/OL]. Chemosphere, 2020, 244: 125350[2022-07-25]. doi: 10.1016/j.chemosphere.2019.125350.
[9] 陈莹, 刘汉燚, 刘娜, 等. 农地土壤重金属Pb和Cd有效性测定方法的筛选与评价[J]. 环境科学, 2021, 42(7): 3494 − 3506.

CHEN Ying, LIU Hanyi, LIU Na, et al. Screening and evaluation of methods for determining available lead (Pb) and cadmium (Cd) in farmland soil [J]. Environmental Science, 2021, 42(7): 3494 − 3506.
[10] 张建云, 高才慧, 朱晖, 等. 生物质炭对土壤中重金属形态和迁移性的影响及作用机制[J]. 浙江农林大学学报, 2017, 34(3): 543 − 551.

ZHANG Jianyun, GAO Caihui, ZHU Hui, et al. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil [J]. Journal of Zhejiang A&F University, 2017, 34(3): 543 − 551.
[11] 肖龙恒, 唐续龙, 卢光华, 等. 重毒性铅污染土壤清洁高效修复研究进展[J]. 工程科学学报, 2022, 44(2): 289 − 304.

XIAO Longheng, TANG Xulong, LU Guanghua, et al. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil [J]. Chinese Journal of Engineering, 2022, 44(2): 289 − 304.
[12] 周彤, 周志俊. 铅及与其他重金属联合暴露对儿童神经发育的影响[J]. 环境与职业医学, 2018, 35(1): 73 − 77.

ZHOU Tong, ZHOU Zhijun. Effects of lead exposure and co-exposure with other heavy metals on children’s neurodevelopment [J]. Journal of Environmental Occupational Medicine, 2018, 35(1): 73 − 77.
[13] WANG Wan, LIU Xiande, ZHAO Liwei, et al. Effectiveness of leaded petrol phase-out in Tianjin, China based on the aerosol lead concentration and isotope abundance ratio [J]. Science of the Total Environment, 2006, 364(1/3): 175 − 187.
[14] 刘军, 陈耿, 柯钊跃, 等. 燃煤电厂周边大气重金属污染特征及来源解析[J]. 中国环境监测, 2017, 33(3): 94 − 98.

LIU Jun, CHEN Geng, KE Zhaoyue, et al. Pollution characteristics and source apportionment of heavy metals in atmosphere surrounding a coal-fired power plant [J]. Environmental Monitoring in China, 2017, 33(3): 94 − 98.
[15] 蒲雅丽, 涂耀仁, 游镇烽, 等. Pb-Zn同位素在沉积物重金属污染源解析方面的应用: 综述与展望[J]. 环境化学, 2017, 36(3): 581 − 590.

PU Yali, TU Yaoren, YOU Zhenfeng, et al. Pb-Zn isotopic tracing technique in sediments: review and prospectives [J]. Environmental Chemistry, 2017, 36(3): 581 − 590.
[16] 于旦洋, 王颜红, 丁茯, 等. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报, 2021, 52(4): 1000 − 1008.

YU Danyang, WANG Yanhong, DING Fu, et al. Comparison of analysis methods of soil heavy metal pollution sources in China in last ten years [J]. Chinese Journal of Soil Science, 2021, 52(4): 1000 − 1008.
[17] NÉGREL P, PETELET-GIRAUD E, GUERROT C, et al. Lead isotopes tracing weathering and atmospheric deposition in a small volcanic catchment [J]. Comptes Rendus Geosciences, 2015, 347(5): 236 − 246.
[18] LONGMAN J, VERES D, ERSEK V, et al. Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model [J/OL]. Scientific Reports, 2018, 8(1): 6154[2022-07-25]. doi: 10.1038/s41598-018-24474-0.
[19] 孙亚乔, 王晓冬, 校康, 等. 淡水环境中氮污染同位素示踪的研究进展[J]. 生态环境学报, 2020, 29(8): 1693 − 1702.

SUN Yaqiao, WANG Xiaodong, JIAO Kang, et al. Research progress of nitrogen pollution isotope tracing in freshwater environment [J]. Ecology and Environment Sciences, 2020, 29(8): 1693 − 1702.
[20] CICCHELLA D, HOOGEWERFF J, ALBANESE S, et al. Distribution of toxic elements and transfer from the environment to humans traced by using lead isotopes. a case of study in the Sarno River basin, south Italy [J]. Environmental Geochemistry and Health, 2016, 38(2): 619 − 637.
[21] 宣斌, 王济, 段志斌, 等. 铅同位素示踪土壤重金属污染源解析研究进展[J]. 环境科学与技术, 2017, 40(11): 17 − 21.

XUAN Bin, WANG Ji, DUAN Zhibin, et al. Advances in application of lead isotope to tracing soil heavy metal pollution [J]. Environmental Science and Technology, 2017, 40(11): 17 − 21.
[22] 张江苏, 林孝先, 朱炳泉. 铅同位素在甘肃格尔珂金矿深部找矿中的应用与实践[J]. 地质学报, 2017, 91(12): 2796 − 2813.

ZHANG Jiangsu, LIN Xiaoxian, ZHU Bingquan. Applications and practices of lead isotopes exploration to buried ore-bodies prospecting in Ge’erke Gold Deposit, Gansu Province, China [J]. Acta Geologica Sinica, 2017, 91(12): 2796 − 2813.
[23] HOEFS J. Stable Isotope Geochemistry [M]. Cham: Springer International Publishing, 2018.
[24] 曾志刚, 秦蕴珊, 翟世奎. 现代海底热液多金属硫化物的成矿物源: 同位素证据[J]. 矿物岩石地球化学通报, 2000, 19(4): 428 − 430.

ZENG Zhigang, QIN Yunshan, ZHAI Shikui. Ore-forming sources of modern seafloor hydrothermal polymetallic sulfides: isotopic evidence [J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2000, 19(4): 428 − 430.
[25] 曾志刚, 秦蕴珊, 翟世奎. 大西洋洋中脊海底表层热液沉积物的铅同位素组成及其地质意义[J]. 青岛海洋大学学报(自然科学版), 2001, 31(1): 103 − 109.

ZENG Zhigang, QIN Yunshan, ZHAI Shikui. Lead isotope compositions of seafloor surface hydrothermal sediments in the TAG hydrothermal dield of Mid-Atlantic Ridge and its geological implications [J]. Journal of Ocean University of Qingdao, 2001, 31(1): 103 − 109.
[26] 刘子宁, 张馨, 罗思亮. 珠江三角洲第四纪沉积物铅同位素组成及示踪意义[J]. 现代矿业, 2011, 27(6): 52 − 53, 56.

LIU Zining, ZHANG Xin, LUO Siliang. Lead isotopic composition and tracer significance of Quaternary Sediments in the Pearl River Delta [J]. Modern Mining, 2011, 27(6): 52 − 53, 56.
[27] 李锋. 中国北方沙尘源区铅同位素分布特征及其示踪意义的初步研究[J]. 中国沙漠, 2007, 27(5): 738 − 744.

LI Feng. Distribution characteristics of lead isotope in dust source areas and its trace significance in the North of China [J]. Journal of Desert Research, 2007, 27(5): 738 − 744.
[28] LI Hongbo, YU Shen, LI Guilin, et al. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai [J]. Environmental Pollution, 2011, 159(12): 3536 − 3544.
[29] DAS A, KRISHNA K, KUMAR R, et al. Tracing lead contamination in foods in the city of Kolkata, India [J]. Environmental Science and Pollution Research, 2016, 23(22): 22454 − 22466.
[30] LEI Kai, GIUBILATO E, CRITTO A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China [J]. Environmental Science and Pollution Research, 2016, 23: 13128 − 13136.
[31] KUMAR S, AGGARWAL S G, SRANGI B, et al. Understanding the influence of open-waste burning on urban aerosols using metal tracers and lead isotopic composition [J]. Aerosol and Air Quality Research, 2018, 18(9): 2433 − 2446.
[32] 于亚锋, 任钟元, 吴亚东, 等. 浙江新昌-嵊州新生代玄武岩的Ca同位素组成: 对华南新生代玄武岩源区成分的启示[J]. 地球化学, 2020, 49(5): 465 − 478.

YU Yafeng, REN Zhongyuan, WU Yadong, et al. Ca isotope composition of Cenozoic basalts from Xinchang-Shengzhou, Zhejiang Province: implications for source compositions of the Cenozoic basalts in the South China [J]. Geochimica, 2020, 49(5): 465 − 478.
[33] 胡仲承, 周金洁, 陈吴文涛, 等. 浙江东部玄武岩发育土壤剖面风化特征[J]. 浙江农林大学学报, 2020, 37(2): 259 − 265.

HU Zhongcheng, ZHOU Jinjie, CHEN Wuwentao, et al. Weathering characteristics of soil profiles from basalt in eastern Zhejiang Province [J]. Journal of Zhejiang A&F University, 2020, 37(2): 259 − 265.
[34] 胡恭任, 于瑞莲, 胡起超, 等. 铅同位素示踪在大气降尘重金属污染来源解析中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1520 − 1526.

HU Gongren, YU Ruilian, HU Qichao, et al. Tracing heavy metal sources in the atmospheric dustfall using stable lead isotope [J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5): 1520 − 1526.
[35] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.

ZHANG Ganlin, GONG Zitong. Soil Survey Laboratory Methods [M]. Beijing: Science Press, 2012.
[36] KURTZ A, DERRY L, CHADWICK O, et al. Refractory element mobility in volcanic soils [J]. Geology, 2000, 28(8): 683 − 686.
[37] LIANG Jie, FENG Chunting, ZENG Guangming, et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China [J]. Environmental Pollution, 2017, 225: 681 − 690.
[38] 支裕优. 浙江长兴煤山盆地土壤重金属来源解析及结果可靠性分析研究[D]. 杭州: 浙江大学, 2017.

ZHI Yuyou. Source Apportionment of Soil Heavy Metals and Reliability Research of the Results in Meishan Basin, Changxing County, Zhejiang Province [D]. Hangzhou: Zhejiang University, 2017.
[39] WIDORY D, VAUTOUR G, POIRIER A. Atmospheric dispersion of trace metals between two smelters: an approach coupling lead, strontium and osmium isotopes from bioindicators [J]. Ecological Indicators, 2018, 84: 497 − 506.
[40] KONG Jing, GUO Qingjun, WEI Rongfei, et al. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China [J]. Science and the Total Environment, 2018, 637/638: 1035 − 1045.
[41] ZHAO Zhiqi, LIU Congqiang, ZHANG Wei, et al. Historical lead pollution in the central region of Guizhou Province, China: a record of lead stable isotopes of lake sediments [J]. Applied Geochemistry, 2011, 26: 267 − 270.
[42] ZHAO Zhiqi, ZHANG Wei, LI Xiaodong, et al. Atmospheric lead in urban Guiyang, Southwest China: isotopic source signatures [J]. Atmoshperic Environment, 2015, 115: 163 − 169.
[43] 罗盼军, 马倩倩, 武均, 等. 生物炭与叶面硒肥联合施用对生菜吸收镉及土壤镉形态的影响[J]. 土壤通报, 2022, 53(4): 956 − 964.

LUO Panjun, MA Qianqian, WU Jun, et al. Effects of combined application of biochar and foliar selenium spray on Cd uptake by lettuce and Cd forms in soil [J]. Chinese Journal of Soil Science, 2022, 53(4): 956 − 964.
[44] ZHAO Keli, FU Weijun, QIU Qiaozhen, et al. Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics [J]. Geoderma, 2019, 337(3): 453 − 462.
[45] FANG Jia, ZHANG Luyao, RAO Shengting, et al. Spatial variation of heavy metals and their ecological risk and health risks to local residents in a typical e-waste dismantling area of southeastern China [J/OL]. Environmental Monitoring and Assessment, 2022, 194(9): 604[2022-07-28]. doi: 10.1007/s10661-022-10296-1.
[46] HUANG Ying, LI Tingqiang, Wu Chengxian, et al. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils [J]. Journal of Hazardous Materials, 2015, 299: 540 − 549.
[47] SHETAYA W H, MARZOUK E R, MOHAMED E F, et al. Chemical and isotopic fractionation of lead in the surface soils of Egypt [J]. Applied Geochemistry, 2019, 106: 7 − 16.
[48] 秦莹, 娄翼来, 姜勇, 等. 沈哈高速公路两侧土壤重金属污染特征及评价[J]. 农业环境科学学报, 2009, 28(4): 663 − 667.

QIN Ying, LOU Yilai, JIANG Yong, et al. Pollution characteristics and assessment of heavy metals in farm land soil beside Shenyang-Harbin super highway [J]. Journal of Agro-Environment Science, 2009, 28(4): 663 − 667.
[49] 赵晨辉, 胡佶, 李发明, 等. 广东汕头湾表层沉积物重金属含量分布及风险评价[J]. 应用海洋学学报, 2020, 39(3): 408 − 418.

ZHAO Chenhui, HU Ji, LI Faming, et al. Ecological risk assessment on heavy metals in surface sediments of Shantou Bay, Guangdong Province [J]. Journal of Applied Oceanography, 2020, 39(3): 408 − 418.
[50] BOLLHOFER A, ROSMAN K J R. Isotopic source signatures for atmospheric lead: the northern Hemisphere [J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3251 − 3262.
[51] CAI Minggang, LIN Yan, CHEN Meng, et al. Improved source apportionment of PAHs and Pb by integrating Pb stable isotopes and positive matrix factorization application (PAHs): a historical record case study from the northern South China Sea [J]. Science and the Total Environment, 2017, 609: 577 − 586.