[1] 邵帅, 何红波, 张威, 等. 土壤有机质形成与来源研究进展[J]. 吉林师范大学学报(自然科学版), 2017, 38(1): 126 − 130.

SHAO Shuai, HE Hongbo, ZHANG Wei, et al. Soil organic matter formation and origin: a view [J]. Journal of Jilin Normal University (Natural Science Edition), 2017, 38(1): 126 − 130.
[2] AMELUNG W, BRODOWSKI S, SANDHAGE-HOFMANN A, et al. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter [J]. Advances in Agronomy, 2008, 100(8): 155 − 250.
[3] HU Yuntao, ZHENG Qin, NOLL L S, et al. Direct measurement of the in-situ decomposition of microbial-derived soil organic matter [J/OL]. Soil Biology and Biochemistry, 2020, 141: 107660[2023-09-23]. doi: 10.1016/j.soilbio.2019.107660.
[4] JOERGENSEN R G, WICHERN F. Alive and kicking: why dormant soil microorganisms matter [J]. Soil Biology and Biochemistry, 2018, 116: 419 − 430.
[5] CHEN Jungang, JI Chengjun, FANG Jingyun, et al. Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests [J/OL]. Science of the Total Environment, 2020, 748: 141318[2023-09-23]. doi: 10.1016/j.scitotenv.2020.141318.
[6] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The microbial efficiency-matrix stabilization framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter [J]. Global Change Biology, 2013, 19(4): 988 − 995.
[7] LIANG Chao, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage [J/OL]. Nature Microbiology, 2017, 2(8): 17105[2023-09-23]. doi: 10.1038/nmicrobiol.2017.105.
[8] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(5): 680 − 695.

LIANG Chao, ZHU Xuefeng. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration [J]. Scientia Sinica (Terrae), 2021, 51(5): 680 − 695.
[9] BENGTSSON G, BERGWALL C. Fate of 15N labelled nitrate and ammonium in a fertilized forest soil [J]. Soil Biology and Biochemistry, 2000, 32(4): 545 − 557.
[10] CUI Jun, ZHU Zhenke, XU Xingliang, et al. Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming [J/OL]. Soil Biology and Biochemistry, 2020, 142: 107720[2023-09-23]. doi: 10.1016/j.soilbio.2020.107720.
[11] APPUHN A, JOERGENSEN R G. Microbial colonisation of roots as a function of plant species [J]. Soil Biology and Biochemistry, 2006, 38(5): 1040 − 1051.
[12] DING Xueli, CHEN Shengyun, ZHANG Bin, et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow [J]. Soil Biology and Biochemistry, 2019, 135: 13 − 19.
[13] WANG Wenjie, LU Jiali, DU Hongju, et al. Ranking thirteen tree species based on their impact on soil physiochemical properties, soil fertility, and carbon sequestration in northeastern China [J]. Forest Ecology and Management, 2020, 404: 214 − 229.
[14] 陈胜仙, 张喜亭, 佘丹琦, 等. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J/OL]. 生物多样性, 2022, 30: 21115[2023-09-23]. doi: 10.17520/biods.2021115.

CHEN Shengxian, ZHANG Xiting, YU Danqi, et al. Effects of plant species diversity, dominant species importance, and soil properties on glomalin-related soil protein [J/OL]. Biodiversity Science, 2022, 30: 21115[2023-09-23]. doi: 10.17520/biods.2021115.
[15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[16] ZHANG Xudong, AMELUNG W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils [J]. Soil Biology and Biochemistry, 1996, 28(9): 1201 − 1206.
[17] JIA Yufu, ZHAI Guoqing, ZHU Shanshan, et al. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest [J/OL]. Soil Biology and Biochemistry, 2021, 161: 108375[2023-09-23]. doi: 10.1016/j.soilbio.2021.108375.
[18] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究(Ⅱ)丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3): 268 − 277.

MA Keping, HUANG Jianhui, YU Shunli, et al. Plant community diversity in Dongling Mountain, Beijing, China (Ⅱ) species richness, evenness and species diversities [J]. Acta Ecologica Sinica, 1995, 15(3): 268 − 277.
[19] WANG Yuanyuan, YU Jinghua, XIAO Lu, et al. Dominant species abundance, vertical structure and plant diversity response to nature forest protection in northeastern China: conservation rffects and implications[J/OL]. Forests, 2020, 11(3): 295[2023-09-23]. doi. org/10.3390/f11030295.
[20] GLASER B, TURRIÓN M-B, ALEF K. Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis [J]. Soil Biology and Biochemistry, 2004, 36(3): 399 − 407.
[21] NI Xiangyin, LIAO Shu, TAN Siyi, et al. A quantitative assessment of amino sugars in soil profiles [J/OL]. Soil Biology and Biochemistry, 2020, 143: 107762[2023-09-23]. doi: 10.1016/j.soilbio.2020.107762.
[22] SHEN Congcong, WANG Jiang, HE Jizheng, et al. Plant diversity enhances soil fungal diversity and microbial resistance to plant invasion [J/OL]. Applied and Environmental Microbiology, 2021, 87: e00251-21[2023-09-23]. doi: 10.1128/AEM.00251-21.
[23] STEINAUER K, CHATZINOTAS A, EISENHAUER N. Root exudate cocktails: the link between plant diversity and soil microorganisms[J]. Ecology & Evolution, 2016, 6(20): 7387 − 7396.
[24] 井艳丽, 刘世荣, 殷有, 等. 赤杨对辽东落叶松人工林土壤氨基糖积累的影响[J]. 生态学报, 2018, 38(8): 2838 − 2845.

JING Yanli, LIU Shirong, YIN You, et al. Effect of N-fixing tree species (Alnus sibirica) on amino sugars in the soil of a Larix kaempferi plantation in eastern Liaoning Province, China [J]. Acta Ecologica Sinica, 2018, 38(8): 2838 − 2845.