[1] 陈艳楠, 钱雨欣, 李志美, 等. 中国土壤铜的区域分级基准建立及生态风险评估初探[J]. 环境科学学报, 2023, 43(3): 448 − 458.

CHEN Yannan, QIAN Yuxin, LI Zhimei, et al. Preliminary study on regional grading benchmarking and ecological risk assessment of copper in Chinese soils [J]. Acta Scientiae Circumstantiae, 2023, 43(3): 448 − 458.
[2] 高文谦, 陈玉福. 铅污染土壤修复技术研究进展及发展趋势[J]. 有色金属, 2011, 63(1): 131 − 136.

GAO Wenqian, CHEN Yufu. Research progress and development trend of remediation of lead-contaminated soil [J]. Nonferrous Metals, 2011, 63(1): 131 − 136.
[3] 赵伟强, 历军, 梁俊伟, 等. 污染土壤异位协同处置修复工程效果评估——以粤北某砷、铅复合污染场地土壤修复工程为例[J]. 黑龙江环境通报, 2023, 36(9): 32 − 34.

ZHAO Weiqiang, LI Jun, LIANG Junwei, et al. Evaluation of remediation effect of ex-situ synergistic disposal remediation engineering for contaminated soil: taking the soil restoration project of arsenic and lead combined contaminated site in Northern Guangdong as an example [J]. Heilongjiang Environmental Journal, 2023, 36(9): 32 − 34.
[4] 温小情, 林亲铁, 肖荣波, 等. 镁基膨润土和水泥对砷铅复合污染土壤的钝化效能与机理研究[J]. 环境科学学报, 2020, 40(9): 3397 − 3404.

WEN Xiaoqing, LIN Qintie, XIAO Rongbo, et al. Study on passivation efficiency and mechanism of Mg-bentonite and cement on As/Pb contaminated soil [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3397 − 3404.
[5] 谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向[J]. 土壤, 2011, 43(6): 857 − 861.

XIE Zubin, LIU Qi, XU Yanping, et al. Advances and perspectives of biochar research [J]. Soils, 2011, 43(6): 857 − 861.
[6] 高文翠, 杨卫君, 贺佳琪, 等. 生物炭添加对麦田土壤微生物群落代谢的影响[J]. 生态学杂志, 2020, 39(12): 3998 − 4004.

GAO Wencui, YANG Weijun, HE Jiaqi, et al. Effects of biochar on soil microbial community metabolism in wheat field [J]. Chinese Journal of Ecology, 2020, 39(12): 3998 − 4004.
[7] 戴志楠, 温尔刚, 陈翰博, 等. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 2021, 38(2): 346 − 354.

DAI Zhinan, WEN Ergang, CHEN Hanbo, et al. Effect of raw and iron-modified biochar on the sorption of As (Ⅴ) by soils [J]. Journal of Zhejiang A&F University, 2021, 38(2): 346 − 354.
[8] 陆扣萍, 郭茜, 胡国涛, 等. 猪炭和竹炭的理化特性差异及其对菜地土壤氨挥发的影响[J]. 浙江农林大学学报, 2017, 34(4): 647 − 655.

LU Kouping, GUO Xi, HU Guotao, et al. Physiological and biochemical characteristics of pig versus bamboo biochars and their effects on ammonia volatilization in greenhouse vegetable production [J]. Journal of Zhejiang A&F University, 2017, 34(4): 647 − 655.
[9] 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251 − 256.

GAO Ruili, ZHU Jun, TANG Fan, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw biochar [J]. Acta Scientiae Circumstantiae, 2016, 36(1): 251 − 256.
[10] 陈承利, 廖敏, 曾路生. 污染土壤微生物群落结构多样性及功能多样性测定方法[J]. 生态学报, 2006, 26(10): 3404 − 3412.

CHEN Chengli, LIAO Min, ZENG Lusheng. Methods to measure the microbial community structure and functional diversity in polluted soils [J]. Acta Ecologica Sinica, 2006, 26(10): 3404 − 3412.
[11] 韩光明, 孟军, 曹婷, 等. 生物炭对菠菜根际微生物及土壤理化性质的影响[J]. 沈阳农业大学学报, 2012, 43(5): 515 − 520.

HAN Guangming, MENG Jun, CAO Ting, et al. Effect of biochar on microorganisms quantities and soil physicochemical property in rhizosphere of spinach [J]. Journal of Shenyang Agricultural University, 2012, 43(5): 515 − 520.
[12] BANDAR T, FRANKS A, XU Jianming, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(9): 903 − 978.
[13] 莫贞林, 曾鸿鹄, 林华, 等. 高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性[J]. 环境科学, 2021, 42(11): 5440 − 5449.

MO Zhenlin, ZENG Honghu, LIN Hua, et al. Adsorption characteristics of Pb (Ⅱ) on Eucalyptus biochar modified by potassium permanganate [J]. Environmental Science, 2021, 42(11): 5440 − 5449.
[14] 于志红, 谢丽坤, 刘爽, 等. 生物炭-锰氧化物复合材料对红壤吸附铜特性的影响[J]. 生态环境学报, 2014, 23(5): 897 − 903.

YU Zhihong, XIE Likun, LIU Shuang, et al. Effect of biochar-manganese oxide composites on adsorption characteristics of Cu in red soil [J]. Ecology and Environmental Sciences, 2014, 23(5): 897 − 903.
[15] 于志红, 黄一帆, 廉菲, 等. 生物炭-锰氧化物复合材料吸附砷(Ⅲ)的性能研究[J]. 农业环境科学学报, 2015, 34(1): 155 − 161.

YU Zhihong, HUANG Yifan, LIAN Fei, et al. Adsorption of Arsenic (Ⅲ) on biochar-manganese oxide composites [J]. Journal of Agro-Environment Science, 2015, 34(1): 155 − 161.
[16] 杨永军. 生物炭负载铁锰氧化物对铅、铜污染土壤的稳定化研究[D]. 杨凌: 西北农林科技大学, 2019.

YANG Yongjun. Study of Modified Biochar on the Stabilization of Heavy Metals Lead and Copper Contaminated Soil [D]. Yangling: Northwest A&F University, 2019.
[17] LIANG Jie, LI Xuemei, YU Zhigang, et al. Amorphous MnO2 Modified biochar derived from aerobically composted swine manure for adsorption of Pb (Ⅱ) and Cd (Ⅱ) [J]. ACS Sustainable Chemistry &Engineering, 2017, 5(6): 5049 − 5058.
[18] 梁欣冉. 锰改性生物炭对砷镉复合污染土壤的修复效果及机制[D]. 武汉: 华中农业大学, 2023.

LIANG Xinran. Remediation Effect and Mechanism of Manganese Modified Biochar on Soil Contaminated with Arsenic and Cadmium [D]. Wuhan: Huazhong Agricultural University, 2023.
[19] 鲁如坤. 土壤农业化学分析法[M]. 北京: 中国农业科技出版社, 2000.

LU Rukun. The Analysis Method of Soil Agricultural Chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000.
[20] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biology and Biochemistry, 2002, 34(9): 1309 − 1315.
[21] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729.

BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedologica Sinica, 2020, 57(3): 721 − 729.
[22] WANG Shengsen, GAO Bin, LI Yuncong, et al. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead [J]. Bioresource Technology, 2015, 181: 13 − 17.
[23] 唐登勇, 黄越, 胥瑞晨, 等. 改性芦苇生物炭对水中低浓度磷的吸附特征[J]. 环境科学, 2016, 37(6): 2195 − 2201.

TANG Dengyong, HUANG Yue, XU Ruichen, et al. Adsorption behavior of low concentration phosphorus from water onto modified reed biochar [J]. Environmental Science, 2016, 37(6): 2195 − 2201.
[24] 蒋子旸, 徐敏, 伍钧. 高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究[J]. 农业环境科学学报, 2021, 40(4): 876 − 883.

JIANG Ziyang, XU Min, WU Jun. Adsorption of Cd2+ by potassium ferrate/potassium permanganate-modified vinasse biochar [J]. Journal of Agro-Environment Science, 2021, 40(4): 876 − 883.
[25] 王东梅, 罗鹤松, 罗唯叶, 等. 改性银杏叶生物炭对铅锌矿区污染土壤的修复效果研究[J]. 四川环境, 2023, 42(4): 29 − 34.

WANG Dongmei, LUO Hesong, LUO Weiye, et al. Study on the remediation effect of modified ginkgo leaves biochar on contaminated soil in lead-zinc mining area [J]. Sichuan Environmental, 2023, 42(4): 29 − 34.
[26] 刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1438 − 1444.

LIU Yuxue, WANG Yaofeng, LÜ Haohao, et al. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery (Brassca chinensis) and soil properties [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1438 − 1444.
[27] 葛顺峰, 彭玲, 任饴华, 等. 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响[J]. 中国农业科学, 2014, 47(2): 366 − 373.

GE Shunfeng, PENG Ling, REN Yihua, et al. Effects of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil [J]. Scientia Agricultura Sinica, 2014, 47(2): 366 − 373.
[28] 高凤, 杨凤军, 吴瑕, 等. 施用生物炭对白菜根际土壤中有机质含量及酶活性的影响[J]. 土壤通报, 2019, 50(1): 103 − 108.

GAO Feng, YANG Fengjun, WU Xia, et al. Effects of biochar application on organic matter content and enzyme activity in rhizosphere soil of Chinese cabbage [J]. Chinese Journal of Soil Science, 2019, 50(1): 103 − 108.
[29] 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15): 16 − 25.

HE Xusheng, ZHANG Shuqing, SHE Diao, et al. Effect of biochar on soil and fertilizer and future research [J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 16 − 25.
[30] 刘利花, 杨淑英, 吕家珑. 长期不同施肥土壤中磷淋溶“阈值”研究[J]. 西北农林科技大学学报(自然科学版), 2003, 31(3): 123 − 126.

LIU Lihua, YANG Shuying, LÜ Jialong. Studies on “threshold value” of phosphorus leaching in long-term different fertilization soils [J]. Journal of Northwest A&F University (Natural Science Edition), 2003, 31(3): 123 − 126.
[31] BOLAN N, HOANG S A, BEIYUAN J, et al. Multifunctional applications of biochar beyond carbon storage [J]. International Materials Reviews, 2021, 67(2): 150 − 200.
[32] 聂天宏. 不同施炭土壤及其老化对重金属-酞酸酯复合污染物吸附行为的影响[D]. 杭州: 浙江农林大学, 2021.

NIE Tianhong. Effect of Biochar-treated Soil and Its Aging on the Adsorption of Heavy Metals and Phthalates [D]. Hangzhou: Zhejiang A&F University, 2021.
[33] CAO Xinde, MA Lena, GAO Bin, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science and Technology, 2009, 43(9): 3285 − 3291.
[34] 张迪, 丁爱芳. 组配钝化剂对镉铅复合污染土壤修复效果研究[J]. 农业环境科学学报, 2018, 37(12): 2718 − 2726.

ZHANG Di, DING Aifang. Effects of combined passivating agents on remediation of Cd and Pb compound-contaminated soil [J]. Journal of Agro-Environment Science, 2018, 37(12): 2718 − 2726.
[35] BRUUN E W, HAUGGAARD-NIELSEN H, IBRAHIM N, et al. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil [J]. Biomass &Bioenergy, 2011, 35(3): 1182 − 1189.
[36] 马伟伟, 王丽霞, 李娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报, 2019, 39(19): 7218 − 7228.

MA Weiwei, WANG Lixia, LI Na, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content [J]. Acta Ecologica Sinica, 2019, 39(19): 7218 − 7228.
[37] 赵雅. 不同处理水稻秸秆对滨海盐渍型水稻土供氮能力和酶活性的影响[D]. 沈阳: 沈阳农业大学, 2019.

ZHAO Ya. Effect of Different Rice Straw Addition Methods on Nitrogen Supplying Capacity and Activity of Enzyme in Coastal Saline Paddy Soil [D]. Shenyang: Shenyang Agricultural University, 2019.
[38] 郑慧芬, 吴红慧, 翁伯琦, 等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料, 2019(2): 68 − 74.

ZHENG Huifen, WU Honghui, WENG Boqi, et al. Improved soil microbial characteristics and enzyme activities with wheat straw biochar addition to an acid tea plantation in red soil [J]. Soil &Fertilizer in China, 2019(2): 68 − 74.
[39] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4): 1110 − 1118.

XU Yunxiang, HE Lili, LIU Yuxue, et al. Effects of biochar addition on enzyme activity and fertility in paddy soil after six years [J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1110 − 1118.
[40] 谭笑. 锰改性生物炭材料的制备及其对镉砷污染土壤的修复效果研究[D]. 北京: 北京化工大学, 2021.

TAN Xiao. Preparation of Manganese Modified Biochar and Its Remediation Effect on Cadmium and Arsenic Contaminated Soil [D]. Beijing: Beijing University of Chemical Technology, 2021.
[41] 李双建, 李虎, 李洁, 等. 施用生物炭对菜地土壤氮素损失影响的模拟[J]. 天津师范大学学报(自然科学版), 2022, 42(2): 55 − 63.

LI Shuangjian, LI Hu, LI Jie, et al. Simulation on the effect of adding biochar on soil nitrogen loss in vegetable field [J]. Journal of Tianjin Normal University (Natural Science Edition), 2022, 42(2): 55 − 63.
[42] WOLDETSADIK D, DRECHSEL P, MARSCHNER B, et al. Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils [J]. Environmental Systems Research, 2017, 6(1): 1 − 12.
[43] 周家顺, 郑金伟, 池忠志, 等. 施用生物质炭对作物产量和氮、磷、钾养分吸收的影响[J]. 南京农业大学学报, 2016, 39(5): 791 − 799.

ZHOU Jiashun, ZHENG Jinwei, CHI Zhongzhi, et al. Effects of biochar amendment on crop yield and the uptake of nitrogen, phosphorus and potassium [J]. Journal of Nanjing Agricultural University, 2016, 39(5): 791 − 799.
[44] 聂新星, 陈防. 生物炭对土壤钾素生物有效性影响的研究进展[J]. 中国土壤与肥料, 2016(2): 1 − 6.

NIE Xinxing, CHEN Fang. Advances of the effects of biochar application on soil potassium bioavailability [J]. Soil &Fertilizer in China, 2016(2): 1 − 6.
[45] 刘悦, 黎子涵, 邹博, 等. 生物炭影响作物生长及其化肥混施的增效机制研究进展[J]. 应用生态学报, 2017, 28(3): 1030 − 1038.

LIU Yue, LI Zihan, ZOU Bo, et al. Research progress in effects of biochar application on crop growth and synergistic mechanism of biochar with fertilizer [J]. Chinese Journal of Applied Ecology, 2017, 28(3): 1030 − 1038.
[46] KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions [J]. Environment International, 2016, 87: 1 − 12.
[47] 陈志良, 袁志辉, 黄玲, 等. 生物炭来源、性质及其在重金属污染土壤修复中的研究进展[J]. 生态环境学报, 2016, 25(11): 1879 − 1884.

CHEN Zhiliang, YUAN Zhihui, HUANG Ling, et al. Pyrolysis materials, characteristics of biochar and its application on remediation of heavy metal contaminated soil: a review [J]. Ecology and Environmental Sciences, 2016, 25(11): 1879 − 1884.
[48] CARBONLL-BARRACHINA A A, BURLÓ F, BURGOS-HERNÁNDEZ A, et al. The influence of arsenite concentration on arsenic accumulation tomato and bean plants [J]. Scientia Horticulturae, 1997, 71(3/4): 167 − 176.
[49] 周楫, 余亚伟, 蒋越, 等. 生物炭对污泥堆肥及其利用过程重金属有效态的影响[J]. 环境科学, 2019, 40(2): 987 − 993.

ZHOU Ji, YU Yawei, JIANG Yue, et al. Effect of biochar on available heavy metals during sewage sludge composting and land application of compost [J]. Environmental Science, 2019, 40(2): 987 − 993.
[50] 董盼盼, 张振明, 张明祥. 生物炭-植物联合修复对土壤重金属Pb、Cd分布效应[J]. 环境科学学报, 2022, 42(1): 280 − 286.

DONG Panpan, ZHANG Zhenming, ZHANG Mingxiang. Distribution effect of biochar-phytoremediation on soil heavy metal Pb and Cd [J]. Acta Scientiae Circumstantiae, 2022, 42(1): 280 − 286.
[51] 费杨, 阎秀兰, 廖晓勇, 等. 铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究[J]. 环境科学学报, 2016, 36(11): 4164 − 4172.

FEI Yang, YAN Xiulan, LIAO Xiaoyong, et al. Stabilization effects and mechanisms of Fe-Mn binary oxide on arsenic and heavy metal co-contaminated soils [J]. Acta Scientiae Circumstantiae, 2016, 36(11): 4164 − 4172.
[52] 董双快, 徐万里, 吴福飞, 等. 铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J]. 农业工程学报, 2016, 32(15): 204 − 212.

DONG Shuangkuai, XU Wanli, WU Fufei, et al. Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 204 − 212.