[1] 王建林, 栾运芳, 大次卓嘎, 等. 中国十字花科(Cruciferae)的地理分布[J]. 植物资源与环境学报, 2006, 15(3): 7 − 11. doi:  10.3969/j.issn.1674-7895.2006.03.002

WANG Jianlin, LUAN Yunfang, Dacizhuoga, et al. A study on geographical distribution of Cruciferae in China [J]. J Plant Resour Environ, 2006, 15(3): 7 − 11. doi:  10.3969/j.issn.1674-7895.2006.03.002
[2] 王晓波. 十字花科共线性分析及数据库平台的构建[D]. 北京: 中国农业科学院, 2015.

WANG Xiaobo. Analyses of Syntenic Relationship among Brassicaceae Species and Construction of Brassicaceae Database[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[3] 王聪, 王嘉欢, 汪勇, 等. 大麦表皮蜡质的组分及晶体结构分析[J]. 麦类作物学报, 2018, 38(6): 693 − 700. doi:  10.7606/j.issn.1009-1041.2018.06.09

WANG Cong, WANG Jiahuan, WANG Yong, et al. Analysis of cuticular wax components and crystal structure of barley [J]. J Triticeae Crops, 2018, 38(6): 693 − 700. doi:  10.7606/j.issn.1009-1041.2018.06.09
[4] 陈伟, 刘德春, 杨莉, 等. 植物表皮蜡质及相关基因研究进展[J]. 植物生理学报, 2016, 52(8): 1117 − 1127.

CHEN Wei, LIU Dechun, YANG Li, et al. Research progress of plant cuticular wax and related genes [J]. Plant Physiol J, 2016, 52(8): 1117 − 1127.
[5] BARTHLOTT W, NEINHUIS C, CUTLER D, et al. Classification and terminology of plant epicuticular waxes [J]. Bot J Linnean Soc, 1998, 126(3): 237 − 260. doi:  10.1111/j.1095-8339.1998.tb02529.x
[6] 徐秀苹, 谷丹, 冯旻. 适用于扫描电镜的拟南芥蜡质样品制备方法[J]. 电子显微学报, 2015, 34(1): 82 − 84.

XU Xiuping, GU Dan, FENG Min. Comparison of sample preparation methods for scanning electron microscopy (SEM) of leaf epicuticular waxes in Arabidopsis [J]. J Chin Electron Microscopy Soc, 2015, 34(1): 82 − 84.
[7] 李红莲. 红菜薹蜡粉性状遗传分析与基因初步定位[D]. 武汉: 华中农业大学, 2014.

LI Honglian. Genetic Analysis and Preliminary Mapping on Wax in Purple-caitai[D]. Wuhan: Huazhong Agricultural University, 2014.
[8] 李帅, 赵秋棱, 彭阳, 等. SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J]. 作物学报, 2016, 42(12): 1827 − 1833. doi:  10.3724/SP.J.1006.2016.01827

LI Shuai, ZHAO Qiuling, PENG Yang, et al. Effects of SA, MeJA and ACC on leaf cuticular wax constituents, structure and permeability in Brassica napus [J]. Acta Agron Sin, 2016, 42(12): 1827 − 1833. doi:  10.3724/SP.J.1006.2016.01827
[9] 牟香丽, 王超, 王帅. 甘蓝无蜡粉突变体叶表皮蜡质超微结构观察[J]. 中国蔬菜, 2013(4): 32 − 37. doi:  10.3969/j.issn.1000-6346.2013.04.006

MU Xiangli, WANG Chao, WANG Shuai. Observation of ultra microstructure of wax-less mutant epicuticular wax on cabbage [J]. China Veg, 2013(4): 32 − 37. doi:  10.3969/j.issn.1000-6346.2013.04.006
[10] 张曦. 大白菜蜡粉基因的精细定位及表达分析[D]. 沈阳: 沈阳农业大学, 2013.

ZHANG Xi. Fine Mapping and Gene Expression of Wax Gene in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis)[D]. Shenyang: Shenyang Agricultural University, 2013.
[11] LEE S B, SUH M C. Cuticular wax biosynthesis is up-regulated by the myb94 transcription factor in Arabidopsis [J]. Plant Cell Physiol, 2015, 56 (1): 48 − 60. doi:  10.1093/pcp/pcu142
[12] HASSANZADEH-KHAYYAT M, AKABERI M, HAGHIGHI H M, et al. Distribution and variability of n-alkanes in waxes of conifers [J]. J For Res, 2019, 30(2): 429 − 433. doi:  10.1007/s11676-018-0639-0
[13] 王丽娜, 金勋, 杨柳, 等. 干旱胁迫下外源激素对大豆叶片表皮透性及蜡质微形态影响[J]. 大豆科学, 2018, 37(2): 246 − 250.

WANG Lina, JIN Xun, YANG Liu, et al. Effects of exogenous hormones on cuticular permeability and wax micromorphology of soybean leaves under drought stress [J]. Soybean Sci, 2018, 37(2): 246 − 250.
[14] 宋超. 菌核病菌、UV-B、低温胁迫条件下拟南芥表皮蜡质的响应机制研究[D]. 重庆: 西南大学, 2013.

SONG Chao. Response Mechanism of the Arabidopsis thaliana Epicutlcular Wax under Sclerotinia Sclerotiorum, UV-B and Cold Stresses[D]. Chongqing: Southwest University, 2013.
[15] 王灿洁. 白菜类蔬菜蜡质基因和红色基因的遗传克隆与分析[D]. 武汉: 华中农业大学, 2018.

WANG Canjie. The Genetic Cloning and Analysis of Waxy Gene and Red Gene in Brassica rapa[D]. Wuhan: Huazhong Agricultural University, 2018.
[16] SEGADO P, DOMÍNGUEZ E, HEREDIA A. Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development [J]. Plant Physiol, 2016, 170(2): 935 − 946. doi:  10.1104/pp.15.01725
[17] BI Huihui, KOVALCHUK N, LANGRIDGE P, et al. The impact of drought on wheat leaf cuticle properties [J]. BMC Plant Biol, 2017, 17: 85. doi:  10.1186/s12870-017-1033-3
[18] 许英, 陈建华, 朱爱国, 等. 低温胁迫下植物响应机理的研究进展[J]. 中国麻叶科学, 2015, 37(1): 40 − 49.

XU Ying, CHEN Jianhua, ZHU Aiguo, et al. Research progress on response mechanism of plant under low temperature stress [J]. Plant Fiber Sci China, 2015, 37(1): 40 − 49.
[19] 倪郁, 宋超, 王小清. 低温胁迫下拟南芥表皮蜡质的响应机制[J]. 中国农业科学, 2014, 47(2): 252 − 261. doi:  10.3864/j.issn.0578-1752.2014.02.005

NI Yu, SONG Chao, WANG Xiaoqing. Investigation on response mechanism of epicuticuloar wax on Arabidopsis thaliana under cold stress [J]. Sci Agric Sin, 2014, 47(2): 252 − 261. doi:  10.3864/j.issn.0578-1752.2014.02.005
[20] 唐帅, 陈悦, 陈宁美, 等. 低温胁迫下盐芥和拟南芥蜡质组成及相关基因的表达差异[J]. 河南农业科学, 2018, 47(11): 37 − 44.

TANG Shuai, CHEN Yue, CHEN Ningmei, et al. Comparison of wax composition and related gene expression in Thellungiella salsuginea and Arabidopsis thaliana under cold stress [J]. J Henan Agric Sci, 2018, 47(11): 37 − 44.
[21] PRUDNIKOVA O N, RAKITINA T Y, KARYAGIN Y Y, et al. Adaptation to UV-B radiation in the ontogenesis of Arabidopsis thaliana plants: the participation of ethylene, ABA, and polyamines [J]. Russ J Dev Biol, 2019, 50(5): 250 − 256. doi:  10.1134/S1062360419050072
[22] 曲玉莹, 曲波, 崔娜, 等. 水分胁迫对‘翠鸟’玉簪叶片表皮蜡质及生理特性的影响[J]. 园艺学报, 2019, 46(7): 1344 − 1350.

QU Yuying, QU Bo, CUI Na, et al. Effects of water stress on the epicuticular wax and physiological characteristics of Hosta‘Halcyon’ leaves [J]. Acta Hortic Sin, 2019, 46(7): 1344 − 1350.
[23] LI Dan, CHENG Yudou, GUAN Junfeng. Effects of 1-methylcyclopropene on surface wax and related gene expression in cold-stored ‘Hongxiangsu’ pears [J]. J Sci Food Agric, 2019, 99(5): 2438 − 2446. doi:  10.1002/jsfa.9452
[24] 柴凌燕. 植物角质膜蜡质转录因子基因SHN1/WIN1的表达载体构建[D]. 郑州: 郑州大学, 2010.

CAI Lingyan. Expression Vector Construction of Plant Cuticle Wax-related Transcription Factor Gene SHN1/WIN1[D]. Zhengzhou: Zhengzhou University, 2010.
[25] LÜ Shiyou, ZHAO Huayan, Des MARAIS D L, et al. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status [J]. Plant Physiol, 2012, 159(3): 930 − 944. doi:  10.1104/pp.112.198697
[26] 周燕, 黄小虎, 许代香, 等. 甘蓝型油菜蜡质相关基因的克隆与表达分析[J]. 农业生物技术学报, 2017, 25(12): 1918 − 1929.

ZHOU Yan, HUANG Xiaohu, XU Daixiang. Cloning and expression analysis of waxy-related genes in Brassica napus [J]. J Agric Biotechnol, 2017, 25(12): 1918 − 1929.
[27] KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plant: an inspiration for biomimetic [J]. Prog Mater Sci, 2009, 54(2): 137 − 178. doi:  10.1016/j.pmatsci.2008.07.003
[28] 刘艳艳, 陈雨沁, 石垒, 等. 拟南芥脂肪酸外运蛋白FAX1影响雄性生殖发育的机制[J]. 植物生理学报, 2018, 54(1): 145 − 156.

LIU Yanyan, CHEN Yuqin, SHI Lei, et al. Investigations into the mechanisms underlying the effects of Arabidopsis thaliana fatty acid export 1(FAX1) in male reproductive development [J]. Plant Physiol J, 2018, 54(1): 145 − 156.
[29] 徐法青. CER3在拟南芥花粉表面结构形成及水合中的作用[D]. 上海: 上海师范大学, 2017.

XU Faqing. The Role of CER3 in the Formation and Hydration of Arabidopsis Pollen Surface Structure[D]. Shanghai: Shanghai Normal University, 2017.
[30] JU S, GO Y S, CHOI H J, et al. DEWAX transcription factor is involved in resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa [J]. Front Plant Sci, 2017, 8: 1210. doi:  10.3389/fpls.2017.01210
[31] SURVILA M, DAVIDSSON P R, PENNANEN V, et al. Peroxidase-generated apoplastic ROS impaircuticle integrity and contribute to DAMP-elicited defenses [J]. Front Plant Sci, 2016, 7(5): 1945. doi:  10.3389/fpls.2016.01945
[32] BOHINC T, MARKOVIČ D, TRDAN S. Leaf epicuticular wax as a factor of antixenotic resistance of cabbage to cabbage flea beetles and cabbage stink bugs attack [J]. Acta Agric Scandinavica, 2014, 64(6): 493 − 500.
[33] ANSTEY T H, MOORE J F. Inheritance of glossy foliage and cream petals in green sprouting broccoli [J]. J Hered, 1954, 45(1): 39 − 41. doi:  10.1093/oxfordjournals.jhered.a106433
[34] 刘泽洲, 杨丽梅, 方智远, 等. 结球甘蓝蜡粉缺失基因cgl1的精细定位[C]//中国园艺学会: 中国园艺学会2015年学术年会论文集. 北京: 中国园艺学会, 2015: 2677.
[35] 蒲媛媛. 甘蓝型油菜显性光叶突变体BnaA. GL基因定位和表皮蜡质分析[D]. 武汉: 华中农业大学, 2013.

PU Yuanyuan. Mapping of BanA. GL Gene in a Dominant Glossy Mutant and Cuticular Wax Analysis in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2013.
[36] 刘东明. 甘蓝蜡质缺失基因BoGL4和BoGL1的克隆及功能分析[D]. 武汉: 华中农业大学, 2017.

LIU Dongming. Cloning and Functional Analysis of BoGL4 and BoGL1 Involved In Cabbage Wax Reduction[D]. Wuhan: Huazhong Agricultural University, 2017.
[37] 周熙荣, 周志疆, 李树林. 甘蓝型油菜无蜡质性状的遗传性[J]. 上海农业学报, 1995, 11(3): 87 − 89.

ZHOU Xirong, ZHOU Zhijiang, LI Shulin. Inheritance of waxless character in rapeseed (B. napus L.) [J]. Acta Agric Shanghai, 1995, 11(3): 87 − 89.
[38] 莫鉴国, 李万渠, 彭云强, 等. 甘蓝型油菜无蜡粉种质材料的改良以及在杂优育种上的应用[J]. 种子, 1999(5): 18 − 20.

MO Jianguo, LI Wanqu, PENG Yunqiang. Improvement and application of waxless germplasm material (B. napus L.) in heterosis [J]. Seed, 1999(5): 18 − 20.
[39] LÜ Shiyou, ZHAO Huayan, PARSONS E P, et al. The glossyhead1 allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis [J]. Plant Physiol, 2011, 157(3): 1079 − 1092. doi:  10.1104/pp.111.185132
[40] MORENO-PÉREZ A, CALERÓN-VENEGAS M, VAISTIJ F E, et al. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds [J]. Planta, 2012, 235(3): 629 − 639. doi:  10.1007/s00425-011-1534-5
[41] GACEK K, BAYER P E, BARTKOWIAK-BRODA I, et al. Genome-wide association study of genetic control of seed fatty acid biosynthesis in Brassica napus [J]. Front Plant Sci, 2017, 7(20): e2062. doi:  10.3389/fpls.2016.02062
[42] ZHAO Lifang, HASLAM T M, SONNTAG A, et al. Functional overlap of long-chain acyl-CoA synthetases in Arabidopsis [J]. Plant Cell Physiol, 2019, 60(5): 1041 − 1054. doi:  10.1093/pcp/pcz019
[43] LÜ Shiyou, SONG Tao, KOSMA D K, et al. Arabidopsis CER8 encodes long-chain acyl-CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis [J]. Plant J, 2009, 59(4): 553 − 564. doi:  10.1111/j.1365-313X.2009.03892.x
[44] JESSEN D, OLBRICH A, KNÜFER J, et al. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis [J]. Plant J, 2011, 68(4): 715 − 726. doi:  10.1111/j.1365-313X.2011.04722.x
[45] QUIST T M, SOKOICHIK I, SHI Huazhong, et al. HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana [J]. Mol Plant, 2009, 2(1): 138 − 151. doi:  10.1093/mp/ssn085
[46] SUH M C, SAMUELS A L, JETTER R, et al. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis [J]. Plant Physiol, 2005, 139(4): 1649 − 1665. doi:  10.1104/pp.105.070805
[47] BACH L, FAURE J D. Role of very-long-chain fatty acids in plant development, when chain length does matter [J]. Comptes Rendus Biol, 2010, 333(4): 361 − 370. doi:  10.1016/j.crvi.2010.01.014
[48] ROUDIER F, GISSOT L, BEAUDOIN F, et al. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis [J]. Plant Cell, 2010, 22(2): 364 − 375. doi:  10.1105/tpc.109.071209
[49] ZHAO Lifang, KATAVIC V, LI Fengling, et al. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis [J]. Plant J, 2010, 64(6): 1048 − 1058. doi:  10.1111/j.1365-313X.2010.04396.x
[50] ROWLAND O, ZHENG Huanquan, HEPWORTH S R, et al. CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis [J]. Plant Physiol, 2006, 142(3): 866 − 877. doi:  10.1104/pp.106.086785
[51] LI Fengling, WU Xuemin, LAM P, et al. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis [J]. Plant Physiol, 2008, 148(1): 97 − 107. doi:  10.1104/pp.108.123471
[52] BERNARD A, DOMERGUE F, PASCAL S, et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex [J]. Plant Cell, 2012, 24(7): 3106 − 3118. doi:  10.1105/tpc.112.099796
[53] OSHIMA Y, SHITAKA M, KOYAMA T, et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri [J]. Plant Cell, 2013, 25(5): 1609 − 1624. doi:  10.1105/tpc.113.110783
[54] 刘秀林. 高浓度CO2调控表皮蜡质合成的研究[D]. 武汉: 中国科学院大学, 2017.

LIU Xiulin. Study on the Syntesis and Regulation of Cuticular Wax at High Carbon Dioxide Concentration[D]. Wuhan: University of Chinese Academy of Science, 2017.
[55] GREER S, WEN Miao, BIRD D, et al. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis [J]. Plant Physiol, 2007, 145(3): 653 − 667. doi:  10.1104/pp.107.107300
[56] KUNST L, SAMUELS A L. Biosynthesis and secretion of plant cuticular wax [J]. Progr Lipid Res, 2003, 42(1): 51 − 80. doi:  10.1016/S0163-7827(02)00045-0
[57] LUO Bin, XUE Xueli, HU Wenli, et al. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion [J]. Plant Cell Physiol, 2007, 48(12): 1790 − 1802. doi:  10.1093/pcp/pcm152
[58] BIRD D, BEISSON A, BRIGHAM J. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion [J]. Plant J, 2007, 52(3): 485 − 498. doi:  10.1111/j.1365-313X.2007.03252.x
[59] QUILICHINI T D, FRIEDMANN M C, SAMUELS A L, et al. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis [J]. Plant Physiol, 2010, 154(2): 678 − 690. doi:  10.1104/pp.110.161968
[60] DeBONO A, YEATS T H, ROSE J K C, et al. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface [J]. Plant Cell, 2009, 21(4): 1230 − 1238. doi:  10.1105/tpc.108.064451
[61] 孙伟. 非特异性脂转移蛋白与植物耐逆性的相关性研究[D]. 济南: 山东师范大学, 2003.

SUN Wei. Nonspecific Lipid Transfer Proteins Relate to Plant Stress Tolerance[D]. Jinan: Shandong Normal University, 2003.