[1] 桂平, 龙鹏. 珍稀树种花榈木研究进展[J]. 贵州农业科学, 2021, 49(7): 98 − 106.

GUI Ping, LONG Peng. Research progress on rare tree species of Ormosia henryi [J]. Guizhou Agricultural Science, 2021, 49(7): 98 − 106.
[2] 张琳婧, 周文娟, 倪林, 等. 红豆属植物化学成分及其药理活性研究进展[J]. 中草药, 2021, 52(14): 4433 − 4442.

ZHANG Linjing, ZHOU Wenjuan, NI Lin, et al. A review on chemical constituents and pharmacological activities of Ormosia [J]. Chinese Traditional and Herbal Drugs, 2021, 52(14): 4433 − 4442.
[3] 翟大才, 姚建林, 王文娟, 等. 红豆树叶挥发油化学成分及其抗氧化和抑菌活性研究[J]. 天然产物研究与开发, 2019, 31(5): 814 − 819.

ZHAI Dacai, YAO Jianlin, WANG Wenjuan, et al. Chemical constituents of the volatile oil from Ormosia hosiei leaves and its antioxidant and antimicrobial activity [J]. Natural Product Research and Development, 2019, 31(5): 814 − 819.
[4] 倪斌, 张伟, 符杰雄, 等. 花梨木叶挥发油化学成分的GC-MS分析[J]. 广东林业科技, 2012, 28(2): 59 − 62.

NI Bin, ZHANG Wei, FU Jiexiong, et al. GC-MS analysis of chemical constituents of the volatile oil from leaves of Ormosia henryi Prain [J]. Guangdong Forestry Science and Technology, 2012, 28(2): 59 − 62.
[5] ZHOU Fei, PICHERSKY Eran. More is better: the diversity of terpene metabolism in plants [J]. Current Opinion in Plant Biology, 2020, 55: 1 − 10.
[6] HOLOPAINEN J K, GERSHENZON J. Multiple stress factors and the emission of plant VOCs [J]. Trends in Plant Science, 2010, 15(3): 176 − 184.
[7] ABBAS F, KE Yanguo, YU Rangcai, et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering [J]. Planta, 2017, 246(5): 803 − 816.
[8] 陈妤, 朱沛煌, 李荣, 等. 植物异戊烯基转移酶研究进展[J]. 生物技术通报, 2021, 37(2): 149 − 161.

CHEN Yu, ZHU Peihuang, LI Rong, et al. Research progress of plant prenyltransferases [J]. Biotechnology Bulletin, 2021, 37(2): 149 − 161.
[9] VRANOVA E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis [J]. Annual Review of Plant Biology, 2013, 64: 665 − 700.
[10] WEI Guo, TIAN Peng, ZHANG Fengxia, et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus) [J]. Plant Physiology, 2016, 172(1): 603 − 618.
[11] LIU Songyu, SHAN Bingqi, ZHOU Xiaomiao, et al. Transcriptome and metabolomics integrated analysis reveals terpene synthesis genes controlling linalool synthesis in grape berries [J]. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9084 − 9094.
[12] DEGENHARDT J, KOLLNER T G, GERSHENZON J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants [J]. Phytochemistry, 2009, 70(15/16): 1621 − 1637.
[13] CHEN Feng, THOLL D, BOHLMANN J, et al. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom [J]. Plant Journal, 2011, 66(1): 212 − 229.
[14] 朱沛煌, 陈妤, 季孔庶. 松科植物萜类合成酶及其基因家族研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 233 − 244.

ZHU Peihuang, CHEN Yu, JI Kongshu. A review of terpene synthases and genes in Pinaceae [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(3): 233 − 244.
[15] PARVEEN I, WANG Mei, ZHAO Jianping, et al. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E, E)-farnesol and α-bisabolene synthases [J]. Plant Molecular Biology, 2015, 89(4/5): 451 − 462.
[16] MARTIN D M, AUBOURG S, SCHOUWEY M B, et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays [J/OL]. BMC Plant Biology, 2010, 10: 226[2022-10-28]. doi: 10.1186/1471-2229-10-226.
[17] HU Zhongfeng, GU Andi, LIANG Lanli, et al. Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-Ⅱ glucosides [J]. Green Chemistry, 2019, 21(12): 3286 − 3299.
[18] YIN Yanchao, ZHANG Xiaodong, GAO Zhiqiang, et al. Over-expressing root-specific β-amyrin synthase gene increases glycyrrhizic acid content in hairy roots of Glycyrrhiza uralensis [J]. Chinese Herbal Medicines, 2019, 11(2): 192 − 199.
[19] LUCHNIKOVA N A, GRISHKO V V, IVSHINA I B. Biotransformation of oleanane and ursane triterpenic acids [J/OL]. Molecules, 2020, 25(23): 5526[2022-10-28]. doi: 10.3390/molecules25235526.
[20] BACHORIK J, URBAN M. Biocatalysis in the chemistry of lupane triterpenoids [J/OL]. Molecules, 2021, 26(8): 2271[2022-10-28]. doi: 10.3390/molecules26082271.
[21] LIU Yi, YIN Qi, DAI Baojia, et al. The key physiology and molecular responses to potassium deficiency in Neolamarckia cadamba [J/OL]. Industrial Crops and Products, 2021, 162: 113260[2022-10-28]. doi. 10.1016/j. indcrop. 2021.113260.
[22] DARSHANI P, SARMA S S, SRIVASTAVA A K, et al. Anti-viral triterpenes: a review [J]. Phytochemistry Reviews, 2022, 21(6): 1761 − 1842.
[23] CRAGG G M, NEWMAN D J. Nature: a vital source of leads for anticancer drug development [J]. Phytochemistry Reviews, 2009, 8(2): 313 − 331.
[24] REJEB I B, PASTOR V, MAUCH-MANI B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms [J]. Plants, 2014, 3(4): 458 − 475.
[25] WAN Yan, LIU Dong, XIA Jia, et al. Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway [J/OL]. Frontiers in Pharmacology, 2022, 13: 977539[2022-10-28]. doi. 10.3389/fphar. 2022.977539.
[26] STASHENKO E, GONZALE A F, MARTINEZ J R, et al. Hallazgo de diclofenaco en un producto fitoterapéutico a base de caléndula comercializado en Colombia [J]. Salud UIS, 2020, 52(3): 261 − 284.
[27] DIOMEDE L, BEEG M, GAMBA A, et al. Can antiviral activity of licorice help fight COVID-19 infection? [J/OL]. Biomolecules, 2021, 11(6): 855[2022-10-18]. doi:10.3390/biom11060855.
[28] HUANG Ancheng, OSBOURN A. Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection [J]. Pest Management Science, 2019, 75(3): 2368 − 2377.
[29] SUN Luchao, RAI A, RAI M, et al. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms [J]. Journal of Natural Medicines, 2018, 72(4): 867 − 881.
[30] GUO Ying, WANG Tongli, FU Fang, et al. Temporospatial flavonoids metabolism variation in Ginkgo biloba leaves [J/OL]. Frontiers in Genetics, 2020, 11: 589326[2022-10-28]. doi: 10.3389/fgene.2020.589326.
[31] THIMMAPPA R, GEISLER K, LOUVEAU T, et al. Triterpene biosynthesis in plants [J]. Annual Review of Plant Biology, 2014, 65: 225 − 257.
[32] CHEN Cong, ZHU Huanqing, KANG Jiaxin, et al. Comparative transcriptome and phytochemical analysis provides insight into triterpene saponin biosynthesis in seeds and flowers of the tea plant (Camellia sinensis) [J/OL]. Metabolites, 2022, 12(3): 204[2022-10-28]. doi. 10.3390/metabo12030204.
[33] ZHOU Hanchen, SHAMALA L F, YI Xingkai, et al. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions [J/OL]. Scientific Reports, 2020, 10(1): 933[2022-10-28]. doi: 10.1038/s41598-020-57805-1.
[34] SUN Yongzhen, NIU Yunyun, XU Jiang, et al. Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate-inducible PqWRKY1 gene from Panax quinquefolius [J]. Plant Cell,Tissue and Organ Culture, 2013, 114(2): 269 − 277.
[35] YI Xiaozhe, WANG Xingwen, WU Lan, et al. Integrated analysis of basic helix loop helix transcription factor family and targeted terpenoids reveals candidate AarbHLH genes involved in terpenoid biosynthesis in Artemisia argyi [J/OL]. Frontiers in Plant Science, 2022, 12: 811166[2022-10-28]. doi: 10.3389/fpls.2021.811166.
[36] ZHAN Ni, HUANG Lanhong, WANG Zhen, et al. Expression of genes encoding terpenoid biosynthesis enzymes during leaf development of Eucalyptus camaldulensis [J]. Biologia Plantarum, 2022, 66: 146 − 154.