[1] WANG Yiguang, ZHANG Chao, DONG Bin, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans [J/OL]. Frontiers Plant Science, 2018, 9 : 1499[2024-03-25]. doi: 10.3389/fpls.2018.01499.
[2] MARHUENDA-MUÑOZ M, HURTADO-BARROSO S, TRESSERRA-RIMBAU A, et al. A review of factors that affect carotenoid concentrations in human plasma: differences between Mediterranean and Northern diets [J]. European Journal of Clinical Nutrition, 2019, 72(2): 18 − 25.
[3] BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. [J]. Journal of Experimental Botany, 2010, 61(11): 2967 − 2977.
[4] BALDERMANN S, KATO M, FLEISCHMANN P, et al. Biosynthesis of α- and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans [J]. Acta Biochimica Polonica, 2012, 59(1): 79 − 81.
[5] HAN Yuanji, WANG Xiaohui, CHEN Weicai, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans [J]. Tree Genetics & Genomes, 2014, 10: 329 − 338.
[6] YUAN Hui, ZHANG Junxiang, NAGESWARAN D, et al. Carotenoid metabolism and regulation in horticultural crops [J/OL]. Horticulture Research, 2015, 2 (1): 15036[2024-03-25]. doi: 10.1038/hortres.2015.36.
[7] NISAR N, LI Li, LU Shan, et al. Carotenoid metabolism in plants [J]. Molecular Plant, 2015, 8(1): 68 − 82.
[8] 沈子又, 张超, 董彬,. 桂花OfLCYBOfLCYE启动子的克隆和活性分析[J]. 生物技术通报, 2018, 34 (1): 137 − 143.

SHEN Ziyou, ZHANG Chao, DONG Bin, et al. Cloning and expression analysis of the promoters of OfLCYB and OfLCYE in Osmanthus fragrans [J]. Biotechnology Bulletin, 2018, 34 (1): 137 − 143.
[9] NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiology, 2006, 140(2): 411 − 432.
[10] SAGAWA J M, STANLEY L E, LAFOUNTAIN A M, et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers [J]. New Phytologist, 2015, 209(3): 1049 − 1057.
[11] FU Changchun, HAN Yanchao, FAN Zhongqi, et al. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening [J]. Journal of Agricultural & Food Chemistry, 2016, 64(27): 5454 − 5463.
[12] HAO Dongyun, OHME-TAKAGI M, SARAI A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant [J]. Journal of Biological Chemistry, 1998, 273(41): 26857 − 26861.
[13] LEE J M, JOUNG J G, MCQUINN R, et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation [J]. The Plant Journal, 2012, 70(2): 191 − 204.
[14] AMPOMAH-DWAMENA C, DRIEDONKS N, LEWIS D, et al. The phytoene synthase gene family of apple (Malus×domestica) and its role in controlling fruit carotenoid content [J/OL]. BMC Plant Biology, 2015, 15 : 185[2024-03-25]. doi: 10.1186/s12870-015-0573-7.
[15] WELSCH R, MAASS D, VOEGEL T, et al. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves [J]. Plant Physiology, 2007, 145(3): 1073 − 1085.
[16] 杨青杰. 黄龙胆类胡萝卜素生物合成基因启动子的功能分析[D]. 长春: 东北师范大学, 2013.

YANG Qingjie. Functional Characterization of the Gentiana lutea Carotenoid Biosynthesis Gene Promoters [D]. Changchun: Northeast Normal University, 2013.
[17] ZHANG Chao, WANG Yiguang, FU Jianxin, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans ‘Yanhong Gui’ [J]. Trees, 2016, 30: 1207 − 1223.
[18] ZHANG Chao, FU Jianxin, WANG Yiguang, et al. Identification of suitable reference genes for gene expression normalization in the quantitative real-time PCR analysis of sweet osmanthus (Osmanthus fragrans Lour. ) [J/OL]. PLoS One, 2015, 10 (8): e0136355[2024-03-25]. doi: 10.1371/journal.pone.0136355.
[19] 吴凡, 张超, 郭加,. 牡丹切花ERF转录因子基因的分离与表达分析[J]. 园艺学报, 2016, 43 (1): 109 − 120.

WU Fan, ZHANG Chao, GUO Jia, et al. Isolation and expression analysis of ERF transcription factor genes in tree peony cut flowers [J]. Acta Horticulturae Sinica, 2016, 43 (1): 109 − 120.
[20] 陈永萍, 高峰, 申艳红, 等. 番木瓜ERF家族与果实成熟相关成员的分析[J]. 园艺学报, 2019, 46 (2): 252 − 264.

CHEN Yongping, GAO Feng, SHEN Yanhong, et al. The analysis of ERFs related to fruit ripening in papaya [J]. Acta Horticulturae Sinica, 2019, 46 (2): 252 − 264.
[21] 徐志璇. 番茄AP2/ERF超家族重鉴定及SlERF. D. 3基因的功能研究[D]. 泰安: 山东农业大学, 2020.

XU Zhixuan. Reidentification of Tomato AP2/ERF Transcription Factor Superfamily and Functional Analysis of SlERF. D. 3 [D]. Taian: Shandong Agricultural University, 2020.
[22] LIU Wei, LI Qiwei, WANG Yi, et al. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency [J]. Biochemical and Biophysical Research Communications, 2017, 491(3): 862 − 868.
[23] QING Hongshen, CHEN Jiahong, JIANG Lingli, et al. Functional characterization of two lycopene cyclases from sweet osmanthus (Osmanthus fragrans) [J/OL]. Scientia Horticulturae, 2022, 299 : 11062[2024-03-25]. doi: 10.1016/j.scienta.2022.111062.
[24] 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析 [J]. 浙江农林大学学报, 2023, 40(1): 64 − 71.

ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2023, 40(1): 64 − 71.
[25] 刘玉成, 王艺光, 张超, 等. 桂花OfCCD1基因启动子克隆与表达特性 [J]. 浙江农林大学学报, 2018, 35(4): 596 − 603.

LIU Yucheng, WANG Yiguang, ZHANG Chao, et al. Cloning and transient expression assay of OfCCD1 gene promoters from Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2018, 35(4): 596 − 603.