[1] RODRÍGUEZ M, CANALES E, BORRÁS-HIDALGO O. Molecular aspects of abiotic stress in plants [J]. Biotecnología Aplicada, 2005, 22(1): 1−10.
[2] BOYER J S. Plant productivity and environment [J]. Science, 1982, 218(4571): 443−448.
[3] 康宗利, 杨玉红, 张立军. 植物响应干旱胁迫的分子机制[J]. 玉米科学, 2006, 14(2): 96−100.

KANG Zongli, YANG Yuhong, ZHANG Lijun. Molecular mechanism of responsing to drought stress in plants [J]. Journal of Maize Sciences, 2006, 14(2): 96−100.
[4] 杨泽敏, 高旦, 王业, 等. 多组学技术揭示药用植物逆境响应及次生代谢调控机制的研究进展[J]. 中药材, 2024, 47(4): 1062−1070.

YANG Zemin, GAO Dan, WANG Ye, et al. Research progress on multi-omics technologies revealing stress responses and secondary metabolism regulation mechanisms in medicinal plants [J]. Journal of Chinese Medicinal Materials, 2024, 47(4): 1062−1070.
[5] JEYASRI R, MUTHURAMALINGAM P, SATISH L, et al. An overview of abiotic stress in cereal crops: negative impacts, regulation, biotechnology and integrated omics[J/OL]. Plants, 2021, 10(7): 1472[2025-07-20]. DOI: 10.3390/plants10071472.
[6] CHAUDHARY J, KHATRI P, SINGLA P, et al. Advances in omics approaches for abiotic stress tolerance in tomato[J/OL]. Biology, 2019, 8(4): 90[2025-07-20]. DOI: 10.3390/biology8040090.
[7] GUPTA S, KAUR R, SHARMA T, et al. Multi-omics approaches for understanding stressor-induced physiological changes in plants: an updated overview[J/OL]. Physiological and Molecular Plant Pathology, 2023, 126: 102047[2025-07-20]. DOI: 10.1016/j.pmpp.2023.102047.
[8] WANG Min, JIANG Biao, PENG Qingwu, et al. Transcriptome analyses in different cucumber cultivars provide novel insights into drought stress responses[J/OL]. International Journal of Molecular Sciences, 2018, 19(7): 2067[2025-07-20]. DOI: 10.3390/ijms19072067.
[9] SINGH P K, INDOLIYA Y, AGRAWAL L, et al. Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants[J/OL]. Current Plant Biology, 2022, 29: 100239[2025-07-20]. DOI: 10.1016/j.cpb.2022.100239.
[10] KRASSOWSKI M, DAS V, SAHU S K, et al. State of the field in multi-omics research: from computational needs to data mining and sharing[J/OL]. Frontiers in Genetics, 2020, 11: 610798[2025-07-20]. DOI: 10.3389/fgene.2020.610798.
[11] ROYCHOWDHURY R, DAS S P, GUPTA A, et al. Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses[J/OL]. Genes, 2023, 14(6): 1281[2025-07-20]. DOI: 10.3390/genes14061281.
[12] DWIVEDI A K, SINGH V, ANWAR K, et al. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice[J/OL]. Plant Physiology and Biochemistry, 2023, 201: 107849[2025-07-20]. DOI: 10.1016/j.plaphy.2023.107849.
[13] JIA Tong, HOU Jieru, IQBAL M Z, et al. Overexpression of the white clover TrSAMDC1 gene enhanced salt and drought resistance in Arabidopsis thaliana [J]. Plant Physiology and Biochemistry, 2021, 165: 147−160.
[14] TARDIEU F. Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit[J/OL]. Frontiers in Physiology, 2013, 4: 17[2025-07-20]. DOI: 10.3389/fphys.2013.00017.
[15] 任磊, 赵夏陆, 许靖, 等. 4种茶菊对干旱胁迫的形态和生理响应[J]. 生态学报, 2015, 35(15): 5131−5139.

REN Lei, ZHAO Xialu, XU Jing, et al. Varied morphological and physiological responses to drought stress among four tea Chrysanthemum cultivars [J]. Acta Ecologica Sinica, 2015, 35(15): 5131−5139.
[16] HAGHPANAH M, HASHEMIPETROUDI S, ARZANI A, et al. Drought tolerance in plants: physiological and molecular responses[J/OL]. Plants, 2024, 13(21): 2962[2025-07-20]. DOI: 10.3390/plants13212962.
[17] SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant, Cell & Environment, 2012, 35(2): 259−270.
[18] WANG Jingyi, MAO Xinguo, WANG Ruitong, et al. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress[J/OL]. Scientific Reports, 2019, 9: 141[2025-07-20]. DOI: 10.1038/s41598-018-37859-y.
[19] FAN H F, DING L, XU Y L, et al. Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves [J]. Russian Journal of Plant Physiology, 2017, 64(2): 162−173.
[20] 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展——从表型到分子[J]. 生物技术进展, 2017, 7(3): 169−176.

SHEN Shaoyan, WU Yuxiang, ZHENG Yushan. Review on drought response in plants from phenotype to molecular [J]. Current Biotechnology, 2017, 7(3): 169−176.
[21] 王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792−1806.

WANG Bin, CHEN Mindong, LIN Liang, et al. Signal pathways and related transcription factors of drought stress in plants [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792−1806.
[22] MUHAMMAD ASLAM M, WASEEM M, JAKADA B H, et al. Mechanisms of abscisic acid-mediated drought stress responses in plants[J/OL]. International Journal of Molecular Sciences, 2022, 23(3): 1084[2025-07-20]. DOI: 10.3390/ijms23031084.
[23] CHEN Xuexue, DING Yanglin, YANG Yongqing, et al. Protein kinases in plant responses to drought, salt, and cold stress [J]. Journal of Integrative Plant Biology, 2021, 63(1): 53−78.
[24] RAZI K, MUNEER S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops [J]. Critical Reviews in Biotechnology, 2021, 41(5): 669−691.
[25] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408(6814): 796−815.
[26] XIE Lingjuan, GONG Xiaojiao, YANG Kun, et al. Technology-enabled great leap in deciphering plant genomes [J]. Nature Plants, 2024, 10(4): 551−566.
[27] CHEN Fei, SONG Yunfeng, LI Xiaojiang, et al. Genome sequences of horticultural plants: past, present, and future[J/OL]. Horticulture Research, 2019, 6: 112[2025-07-20]. DOI: 10.1038/s41438-019-0195-6.
[28] NGUYEN K L, GRONDIN A, COURTOIS B, et al. Next-generation sequencing accelerates crop gene discovery [J]. Trends in Plant Science, 2019, 24(3): 263−274.
[29] YOUNIS A, RAMZAN F, RAMZAN Y, et al. Molecular markers improve abiotic stress tolerance in crops: a review[J/OL]. Plants, 2020, 9(10): 1374[2025-07-20]. DOI: 10.3390/plants9101374.
[30] JIN Long, LI Zhiyong, ZHANG Jian. Research on plant genomics and breeding 2.0[J/OL]. International Journal of Molecular Sciences, 2024, 25(12): 6659[2025-07-20]. DOI:10.3390/ijms25126659.
[31] YOU F M. Plant genomics-advancing our understanding of plants[J/OL]. International Journal of Molecular Sciences, 2023, 24(14): 11528[2025-07-20]. DOI: 10.3390/ijms241411528.
[32] 董舒超, 洪骏, 凌嘉怡, 等. 番茄抗旱性的全基因组关联分析[J]. 园艺学报, 2024, 51(2): 229−238.

DONG Shuchao, HONG Jun, LING Jiayi, et al. Genome-wide association studies of drought tolerance in tomato [J]. Acta Horticulturae Sinica, 2024, 51(2): 229−238.
[33] SAEED F, CHAUDHRY U K, BAKHSH A, et al. Moving beyond DNA sequence to improve plant stress responses[J/OL]. Frontiers in Genetics, 2022, 13: 874648[2025-07-20]. DOI: 10.3389/fgene.2022.874648.
[34] NIU Chundong, JIANG Lijuan, CAO Fuguo, et al. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress [J]. The Plant Cell, 2022, 34(10): 3983−4006.
[35] WANG Qiongli, LIU Peng, JING Hua, et al. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis [J]. New Phytologist, 2021, 232(1): 221−236.
[36] LI Jian, LI Yangyang, WANG Rongyuan, et al. Multiple functions of MiRNAs in Brassica napus L. [J/OL]. Life, 2022, 12(11): 1811[2025-07-20]. DOI: 10.3390/life12111811.
[37] GUO Shuihuan, XU Tengfei, JU Yanlun, et al. MicroRNAs behave differently to drought stress in drought-tolerant and drought-sensitive grape genotypes[J/OL]. Environmental and Experimental Botany, 2023, 207: 105223[2025-07-20]. DOI: 10.1016/j.envexpbot.2023.105223.
[38] BLUM A. Genomics for drought resistance-getting down to earth [J]. Functional Plant Biology, 2014, 41(11): 1191−1198.
[39] SHIKHA M, KANIKA A, RAO A R, et al. Genomic selection for drought tolerance using genome-wide SNPs in maize[J/OL]. Frontiers in Plant Science, 2017, 8: 550[2025-07-20]. DOI: 10.3389/fpls.2017.00550.
[40] LIU Yu, WANG Lin, LIU Chenxu, et al. CgbZIP1: a bZIP transcription factor from Chrysanthemum grandiflora confers plant tolerance to salinity and drought stress[J/OL]. Agronomy, 2022, 12(3): 556[2025-07-20]. DOI: 10.3390/agronomy12030556.
[41] WANG Xuan, MENG Yuan, ZHANG Shaowei, et al. Characterization of bZIP transcription factors in transcriptome of Chrysanthemum mongolicum and roles of CmbZIP9 in drought stress resistance[J/OL]. Plants, 2024, 13(15): 2064[2025-07-20]. DOI: 10.3390/plants13152064.
[42] GENG Lifang, SU Lin, FU Lufeng, et al. Genome-wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091 [J]. Plant Molecular Biology, 2022, 108(6): 605−619.
[43] SHU Jinshuai, ZHANG Lili, LIU Guiming, et al. Transcriptome analysis and metabolic profiling reveal the key regulatory pathways in drought stress responses and recovery in tomatoes[J/OL]. International Journal of Molecular Sciences, 2024, 25(4): 2187[2025-07-20]. DOI: 10.3390/ijms25042187.
[44] LI Sen, JING Xiuli, TAN Qiuping, et al. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple[J/OL]. Frontiers in Plant Science, 2023, 14: 1173107[2025-07-20]. DOI: 10.3389/fpls.2023.1173107.
[45] SU Lingye, FANG Linchuan, ZHU Zhenfei, et al. The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis [J]. Plant Cell Reports, 2020, 39(5): 621−634.
[46] WANG Dan, CHEN Qiyang, CHEN Weiwei, et al. A WRKY transcription factor, EjWRKY17, from Eriobotrya japonica enhances drought tolerance in transgenic Arabidopsis[J/OL]. International Journal of Molecular Sciences, 2021, 22(11): 5593[2025-07-20]. DOI: 10.3390/ijms22115593.
[47] LI Danni, GU Baoxiang, HUANG Chunxi, et al. Functional study of Amorpha fruticosa WRKY20 gene in response to drought stress[J/OL]. International Journal of Molecular Sciences, 2023, 24(15): 12231[2025-07-20]. DOI: 10.3390/ijms241512231.
[48] JING Chenjuan, WANG Duan, LIU Zhikun, et al. Identification of the WRKY gene family in apricot and its response to drought stress [J]. Horticulture, Environment, and Biotechnology, 2023, 64(2): 269−282.
[49] ZHANG Yichang, YU Shuang, NIU Pengfei, et al. RcMYB8 enhances salt and drought tolerance in rose (Rosa chinensis) by modulating RcPR5/1 and RcP5CS1[J/OL]. Molecular Horticulture, 2024, 4(1): 3[2025-07-20]. DOI: 10.1186/s43897-024-00080-9.
[50] SHI Kun, LIU Jia, LIANG Huan, et al. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation [J]. Journal of Integrative Plant Biology, 2024, 66(4): 683−699.
[51] ZHOU Meiliang, MA Jiangtao, ZHAO Yangmin, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica [J]. Gene, 2012, 506(1): 10−17.
[52] ZANDKARIMI H, EBADI A, SALAMI S A, et al. Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L. )[J/OL]. PLoS One, 2015, 10(7): e0134288[2025-07-20]. DOI: 10.1371/journal.pone.0134288.
[53] LIU Shengchuan, JIN Jiqiang, MA Jianqiang, et al. Transcriptomic analysis of tea plant responding to drought stress and recovery[J/OL]. PLoS One, 2016, 11(1): e0147306[2025-07-20]. DOI: 10.1371/journal.pone.0147306.
[54] RAO M J, XU Yuantao, TANG Xiaomei, et al. CsCYT75B1, a citrus CYTOCHROME P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis[J/OL]. Antioxidants, 2020, 9(2): 161[2025-07-20]. DOI: 10.3390/antiox9020161.
[55] LUO Fei, YU Zongjun, ZHOU Qian, et al. Multi-omics-based discovery of plant signaling molecules[J/OL]. Metabolites, 2022, 12(1): 76[2025-07-20]. DOI: 10.3390/metabo12010076.
[56] 蒋费涛, 王书平, 祁俊生, 等. 转录组学技术及其在植物系统学上的研究进展[J]. 现代盐化工, 2020, 47(4): 14−17.

JIANG Feitao, WANG Shuping, QI Junsheng, et al. Research progress of transcriptional technology and its advances in plant phylogeny [J]. Modern Salt and Chemical Industry, 2020, 47(4): 14−17.
[57] 祁云霞, 刘永斌, 荣威恒. 转录组研究新技术: RNA-Seq及其应用[J]. 遗传, 2011, 33(11): 1191−1202.

QI Yunxia, LIU Yongbin, RONG Weiheng. RNA-Seq and its applications: a new technology for transcriptomics [J]. Hereditas (Beijing), 2011, 33(11): 1191−1202.
[58] SELVI A, DEVI K, MANIMEKALAI R, et al. Comparative analysis of drought-responsive transcriptomes of sugarcane genotypes with differential tolerance to drought[J/OL]. 3 Biotech, 2020, 10(6): 236[2025-07-20]. DOI: 10.1007/s13205-020-02226-0.
[59] XU Yanjie, GAO Shan, YANG Yingjie, et al. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress[J/OL]. BMC Genomics, 2013, 14(1): 662[2025-07-20]. DOI: 10.1186/1471-2164-14-662.
[60] GUO Lili, GUO Dalong, YIN Weilun, et al. Tolerance strategies revealed in tree peony (Paeonia suffruticosa, Paeoniaceae) ecotypes differentially adapted to desiccation[J/OL]. Applications in Plant Sciences, 2018, 6(10): e01191[2025-07-20]. DOI: 10.1002/aps3.1191.
[61] JIA Xin, FENG Hui, BU Yanhua, et al. Comparative transcriptome and weighted gene co-expression network analysis identify key transcription factors of Rosa chinensis ‘Old Blush’ after exposure to a gradual drought stress followed by recovery[J/OL]. Frontiers in Genetics, 2021, 12: 690264[2025-07-20]. DOI: 10.3389/fgene.2021.690264.
[62] WEI Tao, DENG Kejun, LIU Dongqing, et al. Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza [J]. Plant & Cell Physiology, 2016, 57(8): 1593−1609.
[63] RUREK M, SMOLIBOWSKI M. Variability of plant transcriptomic responses under stress acclimation: a review from high throughput studies[J/OL]. Acta Biochimica Polonica, 2024, 71: 13585[2025-07-20]. DOI: 10.3389/abp.2024.13585.
[64] 白建瑞. 蛋白质组学在生物植物逆境适应中的作用研究[J]. 现代农业研究, 2025, 31(2): 47−49.

BAI Jianrui. The role of proteomics in stress adaptation in biological plants [J]. Modern Agriculture Research, 2025, 31(2): 47−49.
[65] SHAN Zhongying, LUO Xinglu, WEI Maogui, et al. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz)[J/OL]. Scientific Reports, 2018, 8: 17982[2025-07-20]. DOI: 10.1038/s41598-018-35711-x.
[66] AHMAD P, ABDEL LATEF A A H, RASOOL S, et al. Role of proteomics in crop stress tolerance[J/OL]. Frontiers in Plant Science, 2016, 7: 1336[2025-07-20]. DOI: 10.3389/fpls.2016.01336.
[67] YE Zhujia, SANGIREDDY S, OKEKEOGBU I, et al. Drought-induced leaf proteome changes in switchgrass seedlings[J/OL]. International Journal of Molecular Sciences, 2016, 17(8): 1251[2025-07-20]. DOI: 10.3390/ijms17081251.
[68] LI Jiawei, CHEN Xiaodong, HU Xiangyang, et al. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought [J]. Planta, 2018, 247(1): 69−97.
[69] BOBALOVA J, STROUHALOVA D, BOBAL P. Common post-translational modifications (PTMs) of proteins: analysis by up-to-date analytical techniques with an emphasis on barley [J]. Journal of Agricultural and Food Chemistry, 2023, 71(41): 14825−14837.
[70] 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1−11.

ZHANG Feng, CHEN Wei. Research progress of metabolomics in plant stress biology [J]. Biotechnology Bulletin, 2021, 37(8): 1−11.
[71] XU Yuan, FU Xinyu. Reprogramming of plant central metabolism in response to abiotic stresses: a metabolomics view[J/OL]. International Journal of Molecular Sciences, 2022, 23(10): 5716[2025-07-20]. DOI: 10.3390/ijms23105716.
[72] DUNN W B, BAILEY N J C, JOHNSON H E. Measuring the metabolome: current analytical technologies [J]. The Analyst, 2005, 130(5): 606−625.
[73] ANZANO A, BONANOMI G, MAZZOLENI S, et al. Plant metabolomics in biotic and abiotic stress: a critical overview [J]. Phytochemistry Reviews, 2022, 21(2): 503−524.
[74] LI Yongquan, ZHANG Bipei, HUANG Runsheng, et al. Metabolomic response to drought stress in Belosynapsis ciliata (Blume) ‘Qiuhong’[J/OL]. Agronomy, 2022, 12(2): 466[2025-07-20]. DOI: 10.3390/agronomy12020466.
[75] ZHANG Xuhong, HAN Changzhi, WANG Yubo, et al. Integrated analysis of transcriptomics and metabolomics of garden asparagus (Asparagus officinalis L. ) under drought stress[J/OL]. BMC plant biology, 2024, 24(1): 563[2025-07-20]. DOI: 10.1186/s12870-024-05286-z.
[76] HOCHBERG U, DEGU A, TOUBIANA D, et al. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response[J/OL]. BMC Plant Biology, 2013, 13: 184[2025-07-20]. DOI: 10.1186/1471-2229-13-184.
[77] ARGAMASILLA R, GÓMEZ-CADENAS A, ARBONA V. Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions [J]. Journal of Plant Growth Regulation, 2014, 33: 169−180.
[78] OBATA T, FERNIE A R. The use of metabolomics to dissect plant responses to abiotic stresses [J]. Cellular and Molecular Life Sciences, 2012, 69(19): 3225−3243.
[79] KIM J, WOO H R, NAM H G. Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research [J]. Molecular Plant, 2016, 9(6): 813−825.
[80] KERSEY P J. Plant genome sequences: past, present, future[J]. Current Opinion in Plant Biology, 2019, 48: 1−8.
[81] WILKINS M R, PASQUALI C, APPEL R D, et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and arnino acid analysis [J]. Bio/Technology, 1996, 14(1): 61−65.
[82] FIEHN O, KOPKA J, DÖRMANN P, et al. Metabolite profiling for plant functional genomics [J]. Nature Biotechnology, 2000, 18(11): 1157−1161.
[83] CHEN Sheng, ZHONG Kaiqin, LI Yongyu, et al. Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon (Citrullus lanatus)[J/OL]. Frontiers in Plant Science, 2024, 15: 1364631[2025-07-20]. DOI: 10.3389/fpls.2024.1364631.
[84] MARTIGNAGO D, RICO-MEDINA A, BLASCO-ESCÁMEZ D, et al. Drought resistance by engineering plant tissue-specific responses[J/OL]. Frontiers in Plant Science, 2020, 10: 1676[2025-07-20]. DOI: 10.3389/fpls.2019.01676.
[85] YANG Xinyi, LU Meiqi, WANG Yufei, et al. Response mechanism of plants to drought stress[J/OL]. Horticulturae, 2021, 7(3): 50[2025-07-20]. DOI: 10.3390/horticulturae7030050.
[86] CUI Zhenkui, HUANG Huaming, DU Tianqing, et al. Integrated transcriptome and metabolome revealed the drought responsive metabolic pathways in Oriental Lily (Lilium L. )[J/OL]. PeerJ, 2023, 11: e16658[2025-07-20]. DOI: 10.7717/peerj.16658.
[87] LIU Mingxiao, LIU Yitong, HU Wei, et al. Transcriptome and metabolome analyses reveal the regulatory role of MdPYL9 in drought resistance in apple[J/OL]. BMC Plant Biology, 2024, 24(1): 452[2025-07-20]. DOI: 10.1186/s12870-024-05146-w.
[88] ZHANG Shuangyu, CHEN Xiling, REN Yanshen, et al. Multi-omics analysis reveals anthocyanin synthesis is associated with drought stress tolerance in Chaenomeles speciosa flowers[J/OL]. Journal of Cleaner Production, 2024, 476: 143755[2025-07-20]. DOI: 10.1016/j.jclepro.2024.143755.
[89] TAHERI S, GANTAIT S, AZIZI P, et al. Drought tolerance improvement in Solanum lycopersicum: an insight into “OMICS” approaches and genome editing[J/OL]. 3 Biotech, 2022, 12(3): 63[2025-07-20]. DOI: 10.1007/s13205-022-03132-3.
[90] WANG Shicong, HE Jieqiang, HU Bichun, et al. An integrative multi-omics analysis of histone modifications and DNA methylation reveals the epigenomic landscape in apple under drought stress[J/OL]. Plant Biotechnology Journal, 2025-07-07[2025-07-20]. https://onlinelibrary.wiley.com/doi/10.1111/pbi.70173.
[91] LIANG Yunfei, MA Fang, LI Boyu, et al. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato[J/OL]. Horticulture Research, 2022, 9: uhac198[2025-07-20]. DOI: 10.1093/hr/uhac198.
[92] HAN Jiaixin, LI Xingguo, LI Wenhui, et al. Isolation and preliminary functional analysis of FvICE1, involved in cold and drought tolerance in Fragaria vesca through overexpression and CRISPR/Cas9 technologies [J]. Plant Physiology and Biochemistry, 2023, 196: 270−280.
[93] WANG Tianle, WEI Qian, WANG Zhiling, et al. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness [J]. Journal of Integrative Plant Biology, 2022, 64(3): 741−755.
[94] KAJROLKAR A. Integrating multi-omics data for plant stress response: current advances and future directions[J/OL]. Premier Journal of Plant Biology, 2025, 3: 100012[2025-07-20]. DOI: 10.70389/PJPB.100012.
[95] ANGIDI S, MADANKAR K, TEHSEEN M M, et al. Advanced high-throughput phenotyping techniques for managing abiotic stress in agricultural crops−a comprehensive review[J/OL]. Crops, 2025, 5(2): 8[2025-07-20]. DOI: 10.3390/crops5020008.