[1] 闫东锋, 贺文, 马瑞婷, 等. 抚育间伐对栓皮栎种群空间分布格局的影响[J]. 生态环境学报, 2020, 29(3): 429 − 437.

YAN Dongfeng, HE Wen, MA Ruiting, et al. Effects of forest thinning on the spatial distribution patterns of Quercus variabilis population [J]. Ecol Environ Sci, 2020, 29(3): 429 − 437.
[2] 段梦成, 王国梁, 史君怡, 等. 间伐对油松人工林优势种群结构与分布格局的影响[J]. 生态学杂志, 2019, 38(1): 1 − 10.

DUAN Mengcheng, WANG Guoliang, SHI Junyi, et al. Effects of thinning on structure and spatial pattern of dominant populations in Pinus tabulifomis plantations [J]. Chin J Ecol, 2019, 38(1): 1 − 10.
[3] 石君杰, 陈忠震, 王广海, 等. 间伐对杨桦次生林冠层结构及林下光照的影响[J]. 应用生态学报, 2019, 30(6): 1956 − 1964.

SHI Junjie, CHEN Zhongzhen, WANG Guanghai, et al. Impacts of thinning on canopy structure and understory light in secondary poplar-birch forests [J]. Chin J Appl Ecol, 2019, 30(6): 1956 − 1964.
[4] 张甜, 朱玉杰, 董希斌. 抚育间伐对大兴安岭天然用材林冠层结构及光环境特征的影响[J]. 东北林业大学学报, 2016, 44(10): 1 − 7.

ZHANG Tian, ZHU Yujie, DONG Xibin. Canopy structure and light characters after tending felling in Daxing’an mountains [J]. J Northeast For Univ, 2016, 44(10): 1 − 7.
[5] 李瑞霞, 马洪靖, 闵建刚, 等. 间伐对马尾松人工林林下植物多样性的短期和长期影响[J]. 生态环境学报, 2012, 21(5): 807 − 812.

LI Ruixia, MA Hongjing, MIN Jiangang, et al. Short-term and long-term effects of thinning on the undergrowth diversity in the Pinus massoniana plantation [J]. Ecol Environ Sci, 2012, 21(5): 807 − 812.
[6] 张象君, 王庆成, 郝龙飞, 等. 长白落叶松人工林林隙间伐对林下更新及植物多样性的影响[J]. 林业科学, 2011, 47(8): 7 − 13.

ZHANG Xiangjun, WANG Qingcheng, HAO Longfei, et al. Effect of gap thinning on the regeneration and plant species diversity in Larix olgensis plantation [J]. Sci Silv Sin, 2011, 47(8): 7 − 13.
[7] 刘晓东. 影响栎类苗木早期生长关键因子的试验研究[J]. 甘肃科技, 2012, 28(21): 155 − 156, 148.

LIU Xiaodong. Experimental study on key factors affecting early growth of oak seedlings [J]. Gansu Sci Technol, 2012, 28(21): 155 − 156, 148.
[8] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1): 150 − 165. doi:  10.17521/cjpe.2007.0019

MENG Tingting, NI Jian, WANG Guohong. Plant functional traits, environment and ecosystem functioning [J]. Chin J Plant Ecol, 2007, 31(1): 150 − 165. doi:  10.17521/cjpe.2007.0019
[9] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325 − 339. doi:  10.1360/N052014-00244

LIU Xiaojuan, MA Keping. Plant functional traits: concepts, applications and future directions [J]. Sci Sin Vitae, 2015, 45(4): 325 − 339. doi:  10.1360/N052014-00244
[10] 王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447 − 457. doi:  10.17521/cjpe.2018.0228

WANG Jin, ZHU Jiang, AI Xunru, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China [J]. Chin J Plant Ecol, 2019, 43(5): 447 − 457. doi:  10.17521/cjpe.2018.0228
[11] 张秀芳, 穆振北, 林美娇, 等. 琅岐岛4种优势植物叶功能性状及其影响因子[J]. 应用与环境生物学报, 2020, 26(3): 667 − 673.

ZHANG Xiufang, MU Zhenbei, LIN Meijiao, et al. Functional traits of leaves of four dominant plants on Langqi Island, Fuzhou, and factors influencing these traits [J]. Chin J Appl Environ Biol, 2020, 26(3): 667 − 673.
[12] 陈延松, 李玲玲, 周守标, 等. 珍珠菜属植物功能性状的趋异分化[J]. 生态学杂志, 2019, 38(6): 1653 − 1661.

CHEN Yansong, LI Lingling, ZHOU Zhoubiao, et al. The differentiation of plant functional traits in genus Lysimachia L. [J]. Chin J Ecol, 2019, 38(6): 1653 − 1661.
[13] 闫东锋, 张振, 杨喜田. 豫南山区典型林分地表层根系结构与土壤特性的关系[J]. 东北林业大学学报, 2014, 42(12): 30 − 36.

YAN Dongfeng, ZHANG Zhen, YANG Xitian. Root structures and its relation with top soil properties of typical forest in southern mountains in Henan Province [J]. J Northeast For Univ, 2014, 42(12): 30 − 36.
[14] 孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 2017, 35(6): 940 − 949.

SUN Mei, TIAN Kun, ZHANG Yun, et al. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 2017, 35(6): 940 − 949.
[15] 郑芬, 李兆佳, 邱治军, 等. 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响[J]. 生态学报, 2020, 40(13): 4516 − 4527.

ZHENG Fen, LI Zhaojia, QIU Zhijun, et al. Effects of understory light on functional traits of evergreen broad-leaved forest saplings in Nanling Mountains, Guangdong Province [J]. Acta Ecol Sin, 2020, 40(13): 4516 − 4527.
[16] 陈嘉欣, 张玲玲, 张国庆, 等. 6种园林植物耐旱性分析[J]. 热带亚热带植物学报, 2020, 28(3): 310 − 316.

CHEN Jiaxin, ZHANG Lingling, ZHANG Guoqing, et al. Drought tolerance of six garden species [J]. J Trop Subtrop Bot, 2020, 28(3): 310 − 316.
[17] 刘雅辰, 赵琛迪, 杨子, 等. 太行山南麓不同龄级荆条光合特性及光响应研究[J]. 河南农业大学学报, 2020, 54(2): 203 − 208, 230.

LIU Yachen, ZHAO Chendi, YANG Zi, et al. Study on photosynthetic characteristics and light response of Vitex negundo of different age classesat the southern foot of Taihang Mountain [J]. J Henan Agric Univ, 2020, 54(2): 203 − 208, 230.
[18] 闫东锋, 马瑞婷, 杨庆培, 等. 间伐强度对栎类天然次生林幼苗更新的影响[J]. 河南农业大学学报, 2019, 53(2): 187 − 192.

YAN Dongfeng, MA Ruiting, YANG Qingpei, et al. Effect of thinning intensity on seedling regeneration characteristics in natural secondary oak forests [J]. J Henan Agric Univ, 2019, 53(2): 187 − 192.
[19] 韩文娟, 袁晓青, 张文辉. 油松人工林林窗对幼苗天然更新的影响[J]. 应用生态学报, 2012, 23(11): 2940 − 2948.

HAN Wenjuan, YUAN Xiaoqing, ZHANG Wenhui. Effects of gap size on seedling natural regeneration in artificial Pinus tabulaeformis plantation [J]. Chin J Appl Ecol, 2012, 23(11): 2940 − 2948.
[20] 赵河, 张志铭, 赵勇, 等. 模拟氮沉降对荆条灌木‘肥岛’土壤养分的影响[J]. 生态学报, 2017, 37(18): 6014 − 6020.

ZHAO He, ZHANG Zhiming, ZHAO Yong, et al. Effects of simulated nitrogen deposition on soil nutrients of Vitex negundo L. ‘fertile islands’ [J]. Acta Ecol Sin, 2017, 37(18): 6014 − 6020.
[21] 商添雄, 韩海荣, 程小琴, 等. 华北落叶松人工林生长对抚育间伐的响应及其与土壤因子的关系[J]. 林业科学研究, 2019, 32(6): 40 − 47.

SHANG Tianxiong, HAN Hairong, CHENG Xiaoqin, et al. Response of Larix principis-rupprechtii plantation growth to thinning and its relationship with soil factors [J]. For Res, 2019, 32(6): 40 − 47.
[22] 路兴慧, 丁易, 臧润国, 等. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12): 1300 − 1309. doi:  10.3724/SP.J.1258.2011.01300

LU Xinghui, DING Yi, ZANG Runguo, et al. Analysis of functional traits of woody plant seedlings in an old-growth tropical lowland rainforest on Hainan Island, China [J]. Chin J Plant Ecol, 2011, 35(12): 1300 − 1309. doi:  10.3724/SP.J.1258.2011.01300
[23] OSADA N, OKABE Y, HAYASHI D, et al. Differences between height- and light-dependent changes in shoot traits in five deciduous tree species [J]. Oecologia, 2013, 174(1): 1 − 12.
[24] LHOTKA J M. LOEWENSTEIN E F. Indirect measures for characterizing light along a gradient of mixed-hardwood riparian forest canopy structures [J]. For Ecol Manage, 2006, 226(1/3): 310 − 318.
[25] CORNELISSEN J H C, LAVOREL S, GARNIER E B, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Aust J Bot, 2003, 51(4): 335 − 380. doi:  10.1071/BT02124
[26] HOGAN J A, HERAULT B, BACHELOT B, et al. Understanding the recruitment response of juvenile neotropical trees to logging intensity using functional traits [J]. Ecol Appl, 2018, 28(8): 1998 − 2010. doi:  10.1002/eap.1776
[27] 高林浩, 孙晗, 白雪卡, 等. 气候、系统发育对长白山乔灌木比叶面积与叶元素含量关系的影响[J]. 北京林业大学学报, 2020, 42(2): 19 − 30.

GAO Linhao, SUN Han, BAI Xueka, et al. Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China [J]. J Beijing For Univ, 2020, 42(2): 19 − 30.
[28] 欧延升, 汪霞, 李佳, 等. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J]. 应用与环境生物学报, 2019, 25(1): 38 − 45.

OU Yansheng, WANG Xia, LI Jia, et al. Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years [J]. Chin J Appl Environ Biol, 2019, 25(1): 38 − 45.
[29] 沈晶玉, 周心澄, 张伟华, 等. 祁连山南麓植物根系改善土壤抗冲性研究[J]. 中国水土保持科学, 2004, 2(4): 87 − 91.

SHEN Jingyu, ZHOU Xincheng, ZHANG Weihua, et al. Effects of plant root system on the anti-scourability of soil in the south of Qilian Mountain [J]. Sci Soil Water Conserv, 2004, 2(4): 87 − 91.
[30] 李建聪. 北京西山酸枣灌木林对土壤物理性质的影响[J]. 内蒙古林业科技, 2015, 41(3): 14 − 17.

LI Jiancong. Effects of Ziziphus jujube on soil physical properties in West Mountains of Beijing [J]. J Inn Mongolia For Sci Technol, 2015, 41(3): 14 − 17.
[31] JACKSON R B, CANADELL J R, MOONEY H A, et al. A global analysis of root distribution for terrestri biomass [J]. Oecologia, 1996, 108(3): 389 − 411. doi:  10.1007/BF00333714