[1] |
HODGE J. Darwin’ s book: on the origin of species [J]. Science &Education, 2013, 22(9): 2267 − 2294. |
[2] |
王伟, 刘阳. 植物生命之树重建的现状、问题和对策建议[J]. 生物多样性, 2020, 28(2): 176 − 188.
WANG Wei, LIU Yang. The current status, problems, and policy suggestions for reconstructing the plant tree of life [J]. Biodiversity Science, 2020, 28(2): 176 − 188. |
[3] |
张韵洁, 李德铢. 叶绿体系统发育基因组学的研究进展[J]. 植物分类与资源学报, 2011, 33(4): 365 − 375.
ZHANG Yunjie, LI Dezhu. Advances in phylogenomics based on complete chloroplast genomes [J]. Plant Diversity and Resources, 2011, 33(4): 365 − 375. |
[4] |
THOMAS R H. Molecular evolution and phylogenetics [J/OL]. Heredity, 2001, 86(3): 385[2022-03-20]. doi: 10.1046/j.1365-2540.2001.0923a.x. |
[5] |
MORRIS J A. A Molecular Phylogeny of the Lythraceae and Inference of the Evolution of Heterostyly[D]. Kent: Kent State University, 2007. |
[6] |
HILU K W, BORSCH T, MÜLLER K, et al. Angiosperm phylogeny based on matK sequence information [J]. American Journal of Botany, 2003, 90(12): 1758 − 1776. |
[7] |
LI Xiwen, YANG Yang, HENRY R J, et al. Plant DNA barcoding: from gene to genome [J]. Biological Reviews, 2015, 90(1): 157 − 166. |
[8] |
GRAHAM S, HALL J C, SYTSMA K, et al. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology [J]. International Journal of Plant Sciences, 2005, 166(6): 995 − 1017. |
[9] |
WICKE S, SCHNEEWEISS G M, DEPAMPHILIS C W, et al. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function [J]. Plant Molecular Biology, 2011, 76(3): 273 − 297. |
[10] |
LI Hongtao, LUO Yang, GAN Lu, et al. Plastid phylogenomic insights into relationships of all flowering plant families [J/OL]. BMC Biology, 2021, 19(1): 232[2022-03-20]. doi: 10.1186/s12915-021-01166-2. |
[11] |
ZHOU Jiawei, ZHANG Shuo, WANG Jie, et al. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution [J/OL]. Scientific Reports, 2021, 11(1): 9471[2022-03-20]. doi: 10.1038/s41598-021-88160-4. |
[12] |
WANG Jie, LIAO Xuezhu, GU Cuihua, et al. The Asian lotus (Nelumbo nucifera) pan-plastome: diversity and divergence in a living fossil grown for seed, rhizome, and aesthetics [J/OL]. Ornamental Plant Research, 2022, 2: 2[2022-03-20]. doi: 10.48130/OPR-2022-0002. |
[13] |
GITZENDANNER M A, SOLTIS P S, WONG G K S, et al. Plastid phylogenomic analysis of green plants: abillion years of evolutionary history [J]. American Journal of Botany, 2018, 105(3): 291 − 301. |
[14] |
LI Hongtao, YI Tingshuang, GAO Lianming, et al. Origin of angiosperms and the puzzle of the Jurassic gap [J]. Nature Plants, 2019, 55: 461 − 470. |
[15] |
BARRETT C F, DAVIS J I, LEEBENS-MACK J, et al. Plastid genomes and deep relationships among the commelinid monocot angiosperms [J]. Cladistcs, 2013, 29(1): 65 − 87. |
[16] |
MU Xianyun, TONG Ling, SUN Miao, et al. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data [J/OL]. Molecular Phylogenetics and Evolution, 2020, 147: 106802[2022-03-20]. doi: 10.1016/j.ympev.2020.106802. |
[17] |
WANG Jie, FU Gaofei, TEMBROCK L R, et al. Mutational meltdown or controlled chain reaction: the dynamics of rapid plastome evolution in the hyperdiversity of Poaceae [J/OL]. Journal of Systematics and Evolution, 2022[2022-03-20]. doi: 10.1111/jse.12854. |
[18] |
CAUZ dos SANTOS L A, PORTUGAL Z, CALLOT C, et al. A repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes [J]. Genome Biology and Evolution, 2020, 12(10): 1841 − 1857. |
[19] |
VARGAS O M, ORTIZ E M, SIMPSON B B. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-andean diversification (Asteraceae: Astereae: Diplostephium) [J]. New Phytologist, 2017, 214(4): 1736 − 1750. |
[20] |
DONG Shanshan, CHEN Lu, LIU Yang, et al. The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms [J/OL]. PLoS One, 2020, 15(4): e0231020[2022-03-21]. doi: 10.1371/journal.pone.0231020. |
[21] |
LIU Yang, COX C J, WANG Wei, et al. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias [J]. Systematic Biology, 2014, 63(6): 862 − 878. |
[22] |
YANG Lingxiao, SU Danyan, CHANG Xin, et al. Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling [J/OL]. Plant Communications, 2020, 1(2): 100027[2022-03-20]. doi: 10.1016/j.xplc.2020.100027. |
[23] |
ZENG Liping, ZHANG Ning, ZHANG Qiang, et al. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets [J]. New Phytologist, 2017, 214(3): 1338 − 1354. |
[24] |
MA Pengfei, LIU Yunlong, JIN Guihua, et al. The Pharus latifolius genome bridges the gap of early grass evolution [J]. The Plant Cell, 2021, 33(4): 846 − 864. |
[25] |
LIU Pingli, ZHANG Xi, MAO Jianfeng, et al. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements [J/OL]. Genome Biology, 2020, 21(1): 291. doi: 10.1186/s13059-020-02198-7. |
[26] |
HUANG C H, SUN Renran, HU Yi, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution [J]. Molecular Biology and Evolution, 2016, 33(2): 394 − 412. |
[27] |
XIANG Yezi, HUANG C H, HU Yi, et al. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication [J]. Molecular Biology and Evolution, 2016, 34(2): 262 − 281. |
[28] |
TIMMIS J N, AYLIFFE M A, HUANG C Y, et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes [J]. Nature Reviews Genetics, 2004, 5(2): 123 − 135. |
[29] |
ARCHIBALD J M. Endosymbiosis and eukaryotic cell evolution [J/OL]. Current Biology, 2015, 25(19): R911 − R921[2022-03-20]. doi:10.1016/j.cub.2015.07.055. |
[30] |
ALLEN J F, de PAULA W B M, PUTHIYAVEETIL S, et al. A structural phylogenetic map for chloroplast photosynthesis [J]. Trends in Plant Science, 2011, 16(12): 645 − 655. |
[31] |
RAVI V, KHURANA J P, TYAGI A K, et al. An update on chloroplast genomes [J]. Plant Systematics &Evolution, 2008, 217: 101 − 122. |
[32] |
WANG Ruijiang, CHENG C L, CHANG C C, et al. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots [J/OL]. BMC Evolutionary Biology, 2008, 8(1): 36[2022-03-20]. doi: 10.1186/1471-2148-8-36. |
[33] |
GU Cuihua, DONG Bin, XU Liang, et al. The complete chloroplast genome of Heimia myrtifolia and comparative analysis within Myrtales [J/OL]. Molecules, 2018, 23(4): 846[2022-03-20]. doi: 10.3390/molecules23040846. |
[34] |
HE Wenchuang, CHEN Caijin, XIANG Kunli, et al. The history and diversity of rice domestication as resolved from 1464 complete plastid genomes [J/OL]. Frontiers in Plant Science, 2021, 12[2022-03-20]. doi: 10.3389/fpls.2021.781793. |
[35] |
ZHANG Shudong, JIN Jianjun, CHEN Siyun, et al. Diversification of Rosaceae since the late Cretaceous based on plastid phylogenomics [J]. New Phytologist, 2017, 214(3): 1355 − 1367. |
[36] |
BARKALOV V Y, KOZYRENKO M M. Phylogenetic relationships of Salix L. subg. Salix species (Salicaceae) according to sequencing data of intergenic spacers of the chloroplast genome and ITS rDNA [J]. Russian Journal of Genetics, 2014, 50(8): 828 − 837. |
[37] |
ROKAS A, HOLLAND P W H. Rare genomic changes as a tool for phylogenetics [J]. Trend in Ecology &Evolution, 2000, 15(11): 454 − 459. |
[38] |
MISHLER B D, KELCH D. Phylogenomics and early land plant evolution[M]//GOFFINET B, SHAW A J. Bryophyte Biology. Cambridge: Cambridge University Press, 2008: 173 − 198. |
[39] |
GOFFINET B, WICKETT N J, WERNER O, et al. Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta) [J]. Annals of Botany, 2007, 99(4): 747 − 753. |
[40] |
CHAN C X, RAGAN M A. Next-generation phylogenomics [J/OL]. Biology Direct, 2013, 8(1): 3[2022-03-20]. doi: 10.1186/1745-6150-8-3. |
[41] |
KAN Shenglong, SHEN Tingting, RAN Jinhua, et al. Both conifer Ⅱ and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome [J/OL]. BMC Biology, 2021, 19(1): 146[2022-03-20]. doi: 10.1186/s12915-021-01096-z. |
[42] |
BURKI F. Mitochondrial evolution: going, going, gone [J]. Currernt Biology, 2016, 26(10): 410 − 412. |
[43] |
PALMER J D, HERBON L A. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence [J]. Journal of Molecular Evolution, 1988, 28(1): 87 − 97. |
[44] |
WU Zhiqiang, LIAO Xuezhu, ZHANG Xiaoni, et al. Genomic architectural variation of plant mitochondria: a review of multichromosomal structuring [J]. Journal of Systematics and Evolution, 2022, 60: 160 − 168. |
[45] |
KNOOP V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective [J]. Current Genetics, 2004, 46(3): 123 − 139. |
[46] |
WARD B L, ANDERSON R S, BENDICH A J. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae) [J]. Cell, 1981, 25(3): 793 − 803. |
[47] |
PUTINTSEVA Y A, BONDAR E I, SIMONOV E P, et al. Siberian larch (Larix sibirica Ledeb. ) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome [J/OL]. BMC Genomics, 2020, 21(1): 654[2022-03-20]. doi:10.1186/s12864-020-07061-4. |
[48] |
MACKENZIE S, MCINTOSH L. Higher plant mitochondria [J]. The Plant Cell, 1999, 11(4): 571 − 585. |
[49] |
SLOAN D B, ALVERSON A J, WU M, et al. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus silene [J]. Genome Biology and Evolution, 2012, 4(3): 294 − 306. |
[50] |
CHRISTENSEN A C. Plant mitochondria are a riddle wrapped in a mystery inside an enigma [J]. Journal of Molecular Evolution, 2021, 89(3): 151 − 156. |
[51] |
WU Zhiqiang, WANEKA G, SLOAN D B. The tempo and mode of angiosperm mitochondrial genome divergence inferred from intraspecific variation in Arabidopsis thaliana [J]. G3-Genes Genomes Genetics, 2020, 10(3): 1077 − 1086. |
[52] |
WOLFE K H, LI W H, SHARP P M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs [J]. Proceedings of the National Academy of Sciences, 1987, 84(24): 9054 − 9058. |
[53] |
DROUIN G, DAOUD H, XIA Junnan. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants [J]. Molecular Phylogenetics &Evolution, 2008, 49(3): 827 − 831. |
[54] |
HE Wenchuang, CHEN Caijin, ADEDZE Y M N, et al. Multicentric origin and diversification of atp6-orf79-like structures reveal mitochondrial gene flows in Oryza rufipogon and Oryza sativa [J]. Evolutionary Applications, 2020, 13(9): 2284 − 2299. |
[55] |
闫利平, 裴文娅, 张东. 有瓣蝇类分类、系统发育及演化[J]. 昆虫学报, 2021, 64(6): 757 − 768.
YAN Liping, PEI Wenya, ZHANG Dong. Classification, phylogeny and evolution of the Calyptratae (Insecta: Diptera) [J]. Acta Entomologica Sinica, 2021, 64(6): 757 − 768. |
[56] |
薛清, 杜虹锐, 薛会英, 等. 苜蓿滑刃线虫线粒体基因组及其系统发育研究[J]. 生物技术通报, 2021, 37(7): 98 − 106.
XUE Qing, DU Hongrui, XUE Huiying, et al. Mitochondrial genome and phylogeny of Aphelenchoides medicagus [J]. Biotechnology Bulletin, 2021, 37(7): 98 − 106. |
[57] |
SONG Jiaming, GUAN Zhilin, HU Jianlin, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus [J]. Nature Plants, 2020, 6(1): 34 − 45. |
[58] |
QIN Liuyu, HU Yiheng, WANG Jinpeng, et al. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome [J]. Nature Plants, 2021, 7(9): 1239 − 1253. |
[59] |
向坤莉, 贺文闯, 邹益, 等. 泛基因组研究在遗传多样性和功能基因组学中的应用[J]. 广西植物, 2021, 41(10): 1674 − 1682.
XIANG Kunli, HE Wenchuang, ZOU Yi, et al. Application of pan-genome in genetic diversity and functional genomics [J]. Guihaia, 2021, 41(10): 1674 − 1682. |
[60] |
JOST M, NAUMANN J, ROCAMUNDI N, et al. The first plastid genome of the holoparasitic genus Prosopanche (Hydnoraceae) [J/OL]. Plants, 2020, 9(3): 306[2022-03-20]. doi: 10.3390/plants9030306. |
[61] |
ZHANG Xiaoni, LIN Shennan, PENG Dan, et al. Integrated multi-omic data and analyses reveal the pathways underlying key ornamental traits in carnation flowers [J/OL]. Plant Biotechnology Journal, 2022[2022-03-20]. doi: 10.1111/pbi.13801. |
[62] |
GUO Xing, FANG Dongming, SAHU S K, et al. Chloranthus genome provides insights into the early diversification of angiosperms [J/OL]. Nature Communications, 2021, 12(1): 6930[2022-03-20]. doi: 10.1038/s41467-021-26922-4. |
[63] |
ZHANG Liangsheng, CHEN Fei, ZHANG Xingtan, et al. The water lily genome and the early evolution of flowering plants [J]. Nature, 2020, 577(7788): 79 − 84. |
[64] |
HAMBY R K, ZIMMER E A. Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae) [J]. Plant Systematics &Evolution, 1988, 160(1): 29 − 37. |
[65] |
李佳璇, 梁丹, 张鹏. 系统发育基因组学方法研究进展[J]. 中国科学: 生命科学, 2019, 49(4): 456 − 471.
LI Jiaxuan, LIANG Dan, ZHANG Peng. Recent progress in phylogenomic methods [J]. Scientia Sinica Vitae, 2019, 49(4): 456 − 471. |
[66] |
XIANG Yezi, HUANG C H, HU Yi, et al. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication [J]. Molecular Biology &Evolution, 2017, 34(2): 262 − 281. |
[67] |
LEEBENS MACK J H, BARKER M S, CARPENTER E J, et al. One thousand plant transcriptomes and the phylogenomics of green plants [J]. Nature, 2019, 574(7780): 679 − 685. |
[68] |
刘勉, 张彩飞, 黄建勋, 等. 利用低拷贝核基因重建菊科紫菀亚科族间系统发育关系[J]. 植物学报, 2015, 50(5): 549 − 564.
LIU Mian, ZHANG Caifei, HUANG Jianxun, et al. Phylogenetic reconstruction of tribal relationships in Asteroideae (Asteraceae) with low-copy nuclear genes [J]. Chinese Bulletin of Botany, 2015, 50(5): 549 − 564. |
[69] |
HUANG Xuehui, KURATA N, WEI Xinghua, et al. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 2012, 490(7421): 497 − 501. |
[70] |
LIU Yucheng, DU Huilong, LI Pengcheng, et al. Pan-genome of wild and cultivated soybeans [J]. Cell, 2020, 182(1): 162 − 176. |
[71] |
ZHANG Qixiang, ZHANG He, SUN Lidan, et al. The genetic architecture of floral traits in the woody plant Prunus mume [J/OL]. Nature Communications, 2018, 9(1): 1702[2022-02-20]. doi: 10.1038/s41467-018-04093-z. |
[72] |
AMAR M H, HASSAN A H M, BISWAS M K, et al. Maximum parsimony based resolution of inter-species phylogenetic relationships in Citrus L. (Rutaceae) using ITS of rDNA [J]. Biotechnology &Biotechnological Equipment, 2014, 28(1): 61 − 67. |
[73] |
SOLTIS D E, ALBERT V A, SAVOLAINEN V, et al. Genome-scale data, angiosperm relationships, and ‘ ending incongruence’ : acautionary tale in phylogenetics [J]. Trend in Plant Science, 2004, 9(10): 477 − 483. |
[74] |
RAN Jinhua, SHEN Tinging, WANG Mingming, et al. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms [J/OL]. Proceedings of the Royal Society B, 2018, 285(1881): 20181012. doi: 10.1098/rspb.2018.1012. |
[75] |
YANG Ziheng. Computational Molecular Evolution[M]. Oxford: Oxford University Press, 2008: 15 − 37. |
[76] |
WU Ziqiang, GE Song. The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts [J]. Molecular Phylogenetics and Evolution, 2011, 62(1): 573 − 578. |
[77] |
WU Wei, ZHOU Renchao, HUANG Yelin, et al. Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia [J]. Journal of Plant Research, 2010, 123(2): 231 − 239. |
[78] |
ZHAO Lei, LI Xia, ZHANG Ning, et al. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids [J]. Molecular Phylogenetics and Evolution, 2016, 105: 166 − 176. |