[1] LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623 − 1627.
[2] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437 − 5448.

LIU Shirong, WANG Hui, LUAN Junwei. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437 − 5448.
[3] 武燕, 黄青, 刘讯, 等. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2023, 48(3): 99 − 107.

WU Yan, HUANG Qing, LIU Xun, et al. Effects of Pinus massoniana plantation age on soil physical and chemical properties in karst area in southwest China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 48(3): 99 − 107.
[4] BONGIORNO G, BÜNEMANN E K, OGUEJIOFOR C U, et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe[J]. Ecological Indicators, 2019, 99: 38 − 50.
[5] 柳敏, 宇万太, 姜子绍, 等. 土壤活性有机碳[J]. 生态学杂志, 2006, 25(11): 1412 − 1417.

LIU Min, YU Wantai, JIANG Zishao, et al. A research review onsoil active organic carbon[J]. Chinese Journal of Ecology, 2006, 25(11): 1412 − 1417.
[6] YUAN Guoyin, HUAN Weiwei, SONG Hang, et al. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system [J/OL]. Soil and Tillage Research, 2021, 209 : 104958[2024-02-26]. doi: 10.1016/j.still.2021.104958.
[7] 张金硕, 李素艳, 孙向阳, 等. 山东省不同植被类型土壤有机碳及其组分分布特征[J]. 土壤, 2024, 56(2): 350 − 357.

ZHANG Jinshuo, LI Suyan, SUN Xiangyang, et al. Characteristics of soil organic carbon and its components under different vegetation types in Shandong Province[J]. Soils, 2024, 56(2): 350 − 357.
[8] 窦艳星, 侯琳, 马红红, 等. 间伐对松栎混交林土壤活性有机碳的影响[J]. 中南林业科技大学学报, 2015, 35(5): 64 − 69.

DOU Yanxing, HOU Lin, MA Honghong, et al. Effects of forest thinning on soil labile organic carbon in a pine-oak mixed forest[J]. Journal of Central South University of Forestry & Technology, 2015, 35(5): 64 − 69.
[9] 邓莉丽, 刘青华, 周志春, 等. 抗松材线虫病马尾松种质资源遗传多样性分析及核心种质构建[J]. 浙江农林大学学报, 2024, 41(1): 67 − 78.

DENG Lili, LIU Qinghua, ZHOU Zhichun, et al. Genetic diversity analysis and core collection of pinewood nematodiasis-resistant Pinus massoniana germplasm resources[J]. Journal of Zhejiang A&F University, 2024, 41(1): 67 − 78.
[10] 浙江省林业局. 浙江省林业局林业概况[EB/OL]. 2023-07-05[2024-02-28]. http://lyj.zj.gov.cn/col/col1275946/.

Department of Forestry of Zhejiang Province. Forestry Overview of Zhejiang Forestry Bureau [EB/OL]. 2023-07-05[2024-02-28]. http://lyj.zj.gov.cn/col/col1275946/.
[11] 浙江省林业局. 中国绿色时报: “数字森防”助力浙江高质量防控松材线虫病 [EB/OL]. 2024-01-16[2024-02-28]. http://lyj.zj.gov.cn/art/2024/1/16/art_1275964_59065639.html.

Department of Forestry of Zhejiang Province. China Green Times: “Digital Forest DefenseHelps Zhejiang to Prevent and Control Pine Wilt Disease with High Quality [EB/OL]. 2024-01-16[2024-02-28]. http://lyj.zj.gov.cn/art/2024/1/16/art_1275964_59065639.html.
[12] 吴敏娟, 尤誉杰, 张晓红, 等. 不同干扰模式对受害马尾松人工纯林林分结构的影响[J]. 应用生态学报, 2019, 30(1): 58 − 66.

WU Minjuan, YOU Yujie, ZHANG Xiaohong, et al. Effects of different disturbance patterns on stand structure of infected pure Pinus massoniana plantation[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 58 − 66.
[13] 张华锋, 陈思宇, 刘刚, 等. 松材线虫病疫木卫生伐对马尾松纯林林分结构的影响[J]. 浙江农林大学学报, 2020, 37(4): 745 − 751.

ZHANG Huafeng, CHEN Siyu, LIU Gang, et al. Effects of sanitation cutting pine wilt diseased trees on the stand structure of pure Pinus massoniana plantation[J]. Journal of Zhejiang A&F University, 2020, 37(4): 745 − 751.
[14] JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3/4): 253 − 268.
[15] PARIONA W, FREDERICKSEN T S, LICONA J C. Natural regeneration and liberation of timber species in logging gaps in two Bolivian tropical forests[J]. Forest Ecology and Management, 2003, 181(3): 313 − 322.
[16] MA Junyong, KANG Fengfeng, CHENG Xiaoqin, et al. Moderate thinning increases soil organic carbon in Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118 − 128.
[17] DON A, SCHUMACHER J, FREIBAUER A. Impact of tropical land-use change on soil organic carbon stocks: a meta-analysis[J]. Global Change Biology, 2011, 17(4): 1658 − 1670.
[18] ZHANG Yaohua, XU Xianli, LI Zhenwei, et al. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China[J]. Science of the Total Environment, 2019, 650(2): 2657 − 2665.
[19] 王晓荣, 雷蕾, 曾立雄, 等. 抚育间伐对马尾松林土壤活性有机碳的短期影响[J]. 生态学杂志, 2021, 40(4): 1049 − 1061.

WANG Xiaorong, LEI Lei, ZENG Lixiong, et al. Short-term effects of tending thinning on soil labile organic carbon in Pinus massoniana stands[J]. Chinese Journal of Ecology, 2021, 40(4): 1049 − 1061.
[20] 翟凯燕, 马婷瑶, 金雪梅, 等. 间伐对马尾松人工林土壤活性有机碳的影响[J]. 生态学杂志, 2017, 36(3): 609 − 615.

ZHAI Kaiyan, MA Tingyao, JIN Xuemei, et al. Effects of thinning intensity on soil active organic carbon in Pinus massoniana plantation[J]. Chinese Journal of Ecology, 2017, 36(3): 609 − 615.
[21] 赵元, 张伟, 胡培雷, 等. 桂西北喀斯特峰丛洼地不同植被恢复方式下土壤有机碳组分变化特征[J]. 生态学报, 2021, 41(21): 8535 − 8544.

ZHAO Yuan, ZHANG Wei, HU Peilei, et al. Responses of soil organic carbon fractions to different vegetation restoration in at typical karst depression[J]. Acta Ecologica Sinica, 2021, 41(21): 8535 − 8544.
[22] 李文杰, 张祯皎, 赵雅萍, 等. 刺槐林恢复过程中土壤微生物碳降解酶的变化及与碳库组分的关系[J]. 环境科学, 2022, 43(2): 1050 − 1058.

LI Wenjie, ZHANG Zhenjiao, ZHAO Yaping, et al. Changes in soil microbial carbon-degrading enzymes and their relationships with carbon pool components during the restoration process of Robinia pseudoacacia[J]. Environmental Science, 2022, 43(2): 1050 − 1058.
[23] 苏静, 赵世伟, 马继东, 等. 宁南黄土丘陵区不同人工植被对土壤碳库的影响[J]. 水土保持研究, 2005, 12(3): 50 − 52, 179.

SU Jing, ZHAO Shiwei, MA Jidong, et al. Influence of man-made vegetation on carbon pool in southern Ningxia region in Loess Plateau[J]. Research of Soil and Water Conservation, 2005, 12(3): 50 − 52, 179.
[24] DUVENECK M, SCHELLER R, WHITE M. Effects of alternative forest management on biomass and species diversity in the face of climate change in the northern Great Lakes region (USA)[J]. Canadian Journal of Forest Research, 2014, 44(7): 700 − 710.
[25] 王伟, 李占斌, 李鹏, 等. 生态建设对坡面土壤有机碳分布的影响[J]. 水土保持研究, 2020, 27(2): 35 − 41.

WANG Wei, LI Zhanbin, LI Peng, et al. Effect of ecological construction on soil organic carbon distributionon slope land[J]. Research of Soil and Water Conservation, 2020, 27(2): 35 − 41.
[26] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005.

BAO Shidan. Soil Agrochemical Analysis [M]. Beijing: China Agricultural Publishing House, 2005.
[27] 李鹏, 刘晓君, 刘苑秋, 等. 红壤侵蚀区不同植被恢复模式土壤碳储量特征及其影响因素[J]. 浙江农林大学学报, 2024, 41(1): 12 − 21.

LI Peng, LIU Xiaojun, LIU Yuanqiu, et al. Characteristics and influencing factors of soil carbon stocks in different vegetation restoration models in red soil erosion areas[J]. Journal of Zhejiang A&F University, 2024, 41(1): 12 − 21.
[28] BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 − 1466.
[29] 李伟成, 盛海燕, 蒋跃平, 等. 基塘系统不同竹林土壤CO2通量特征及其影响因子[J]. 林业科学, 2018, 54(8): 13 − 22.

LI Weicheng, SHENG Haiyan, JIANG Yueping, et al. Soil CO2 flux and its influence factors of different bamboo plantations in the dike-pond ecosystem[J]. Scientia Silvae Sinicae, 2018, 54(8): 13 − 22.
[30] 胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(6/7): 1161 − 1167.

HU Chanjuan, LIU Guohua, WU Yaqiong. A review of soil microbial biomass and diversity measurements[J]. Ecology and Environmental Sciences, 2011, 20(6/7): 1161 − 1167.
[31] 国家环境保护总局. 水质 硝酸盐氮的测定 紫外分光光度法: HJ/T 346—2007 [J]. 北京: 中国标准出版社, 2007.

State Environmental Protection Administration. Water Quality−Determination of Nitrate-nitrogen−ultraviolet Spectrophotometry: HJ/T 346−2007 [J]. Beijing: Standards Press of China, 2007.
[32] 陈希, 陈伏生, 叶素琼, 等. 丘陵红壤茶园根际氮磷转化对不同强度酸雨胁迫的响应[J]. 应用生态学报, 2015, 26(1): 1 − 8.

CHEN Xi, CHEN Fusheng, YE Suqiong, et al. Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 1 − 8.
[33] GARTEN, C T, POST, HANSON P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2): 115 − 145.
[34] 王昌亮, 王庆成, 张程, 等. 间伐强度对落叶松人工林土壤有机碳的影响[J]. 森林工程, 2015, 31(1): 12 − 16.

WANG Changliang, WANG Qingcheng, ZHANG Cheng, et al. Effect of thinning intensity on soil organic carbon in Larix gmelinii plantation[J]. Forest Engineering, 2015, 31(1): 12 − 16.
[35] 袁知洋, 邓邦良, 张学玲, 等. 武功山草甸植被小群落土壤活性有机碳与土壤养分的典型相关分析[J]. 中南林业科技大学学报, 2016, 36(2): 84 − 90.

YUAN Zhiyang, DENG Bangliang, ZHANG Xueling, et al. Canonical correlation analysis between soil active organic carbon and soil nutrient in different vegetation small communities of Wugong Mountain alpine meadow[J]. Journal of Central South University of Forestry & Technology, 2016, 36(2): 84 − 90.
[36] 林鑫宇, 惠昊, 王亚茹, 等. 不同林分类型下土壤活性有机碳含量和分布特征[J]. 安徽农业大学学报, 2021, 48(3): 437 − 443.

LIN Xinyu, HUI Hao, WANG Yaru, et al. The content and distribution characteristics of soil active organic carbon under different stand types[J]. Journal of Anhui Agricultural University, 2021, 48(3): 437 − 443.
[37] GREGORICH E G, CARTER M R, ANGERS D A, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science, 1994, 74(4): 367 − 385.
[38] 尚瑶, 傅民杰, 孙宇贺, 等. 温带阔叶林土壤有机碳及其颗粒组分空间分布特征[J]. 水土保持学报, 2014, 28(5): 176 − 181, 301.

SHANG Yao, FU Minjie, SUN Yuhe, et al. Spatial distribution of soil organic carbon and particulate organic carbon in temperate broad-leaved forest in northeast of China[J]. Journal of Soil and Water Conservation, 2014, 28(5): 176 − 181, 301.
[39] 韩海荣. 华北落叶松人工林根际与非根际土壤活性有机碳及酶活性对密度调控的响应[D]. 北京: 北京林业大学, 2020.

HAN Hairong. Response of Active Organic Carbon and Enzyme Activities to Density Adjustment in Rhizosphere and Non-rhizosphere Soil of Larix principis-rupprechtii Plantation [D]. Beijing: Beijing Forestry University, 2020.
[40] GEISEN S, HU Shenran, CRUZ T E E, et al. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes[J]. The ISME Journal, 2021, 15(2): 618 − 621.
[41] PIAO H C, HONG Y T, YUAN Z Y. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China[J]. Biology and Fertility of Soils, 2000, 30(4): 294 − 297.
[42] 王斐, 马锐豪, 夏开, 等. 森林转换对土壤活性有机碳组分的影响[J]. 水土保持研究, 2023, 30(1): 233 − 240.

WANG Fei, MA Ruihao, XIA Kai, et al. Response of soil labile organic carbon fractions to forest conversions[J]. Journal of Soil and Water Conservation, 2023, 30(1): 233 − 240.
[43] 朱浩宇, 王子芳, 陆畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2): 354 − 360.

ZHU Haoyu, WANG Zifang, LU Chang, et al. Variation characteristics of soil active organic carbon and carbon pools under five vegetation types in Jinyun Mountain[J]. Soil, 2021, 53(2): 354 − 360.
[44] 徐雅洁, 郭月峰, 姚云峰, 等. 不同林分配置对土壤水分物理性质的影响[J]. 四川农业大学学报, 2021, 39(3): 370 − 377.

XU Yajie, GUO Yuefeng, YAO Yunfeng, et al. Effect of different forest-stand configuration on soil-moisture physical properties[J]. Journal of Sichuan Agricultural University, 2021, 39(3): 370 − 377.
[45] 辜翔. 中亚热带植被恢复对土壤有机碳库积累及其稳定性的影响[D]. 长沙: 中南林业科技大学, 2019.

GU Xiang. The Effect of Vegetation Restoration on the Accumulation and Stability of Soil Organic Carbon Pool in the Mid-Subtropical of China [D]. Changsha: Central South University of Forestry & Technology, 2019.
[46] 袁星明, 朱宁华, 郭耆, 等. 南亚热带不同人工林对土壤理化性质的影响及土壤质量评价[J]. 林业科学研究, 2022, 35(3): 112 − 122.

YUAN Xingming, ZHU Ninghua, GUO Qi, et al. Effects of different plantations on soil physical and chemical properties and soil quality evaluation in south subtropical zone[J]. Forest Research, 2022, 35(3): 112 − 122.