[1] 李莉, 庞天虹, 付建新, 等. 桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定[J]. 浙江农林大学学报, 2025, 42(1): 86−93.

LI Li, PANG Tianhong, FU Jianxin, et al. Screening and identification of ERF transcription factors of B2 subgroup involved in regulating lycopene β-cyclase gene LCYB in Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2025, 42(1): 86−93.
[2]

WU Lipeng, LIU Junyi, HUANG Weisu, et al. Exploration of Osmanthus fragrans Lour.’s composition, nutraceutical functions and applications[J/OL]. Food Chemistry, 2022, 377: 131853[2025-08-01]. DOI: 10.1016/j.foodchem.2021.131853.
[3]

CHEN Hongguo, ZENG Xiangling, YANG Jie, et al. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J/OL]. Horticulture Research, 2021, 8: 98[2025-08-01]. DOI: 10.1038/s41438-021-00531-0.
[4] 阳韶昆, 蔡璇, 邹晶晶, 等. 桂花开放与衰老过程中花瓣蛋白酶活性与种类的变化[J]. 园艺学报, 2012, 39(10): 1967−1974.

YANG Shaokun, CAI Xuan, ZOU Jingjing, et al. The proteinase activity and types of Osmanthus fragrans petals during flower opening and senescence [J]. Acta Horticulturae Sinica, 2012, 39(10): 1967−1974.
[5] 贺贝, 蔡璇, 曾祥玲, 等. ‘潢川金桂’花瓣衰老过程中细胞程序性死亡的生理机制[J]. 浙江农林大学学报, 2023, 40(3): 475−480.

HE Bei, CAI Xuan, ZENG Xiangling, et al. Programmed cell death events during the petal senescence of Osmanthus fragrans ‘Huangchuan Jingui’ [J]. Journal of Zhejiang A&F University, 2023, 40(3): 475−480.
[6]

QIU Hui, CHEN Yiwen, FU Jianxin, et al. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans [J]. Genes & Genomics, 2024, 46(4): 399−408.
[7] 张耀, 王家璇, 蔡璇, 等. 桂花OfACOs基因家族鉴定及表达分析[J]. 浙江农林大学学报, 2023, 40(3): 492−501.

ZHANG Yao, WANG Jiaxuan, CAI Xuan, et al. Identification and expression of OfACOs gene family in Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2023, 40(3): 492−501.
[8]

ZOU Jingjing, CAI Xuan, YANG Jie, et al. DNA hypomethylation mediates flower opening and senescence in sweet Osmanthus through auxin and ethylene responsive pathways[J/OL]. Postharvest Biology and Technology, 2023, 198: 112250[2025-08-01]. DOI: 10.1016/j.postharvbio.2023.112250.
[9]

BINDER B M. Ethylene signaling in plants [J]. Journal of Biological Chemistry, 2020, 295(22): 7710−7725.
[10]

JIA Chenhao, SHI Yujiao, WANG Hao, et al. Genome-wide identification and expression analysis of small auxin up RNA (SAUR) genes in rice (Oryza sativa)[J/OL]. Plant Signaling & Behavior, 2024, 19(1): 2391658[2025-08-01]. DOI: 10.1080/15592324.2024.2391658.
[11]

REN Hong, GRAY W M. SAUR proteins as effectors of hormonal and environmental signals in plant growth [J]. Molecular Plant, 2015, 8(8): 1153−1164.
[12]

LI Ming, CHEN Rui, GU Hong, et al. Grape small auxin upregulated RNA (SAUR) 041 is a candidate regulator of berry size in grape[J/OL]. International Journal of Molecular Sciences, 2021, 22(21): 11818[2025-08-01]. DOI: 10.3390/ijms222111818.
[13]

WANG Jiajun, SUN Ning, ZHANG Fangfang, et al. SAUR17 and SAUR50 differentially regulate PP2C-D1 during apical hook development and Cotyledon opening in Arabidopsis [J]. The Plant Cell, 2020, 32(12): 3792−3811.
[14]

WEN Zewen, MEI Yuanyuan, ZHOU Jie, et al. SAUR49 can positively regulate leaf senescence by suppressing SSPP in Arabidopsis [J]. Plant & Cell Physiology, 2020, 61(3): 644−658.
[15]

KONG Yingying, ZHU Yubin, GAO Chen, et al. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis [J]. Plant & Cell Physiology, 2013, 54(4): 609−621.
[16]

SPARTZ A K, LOR V S, REN Hong, et al. Constitutive expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation [J]. Plant Physiology, 2017, 173(2): 1453−1462.
[17]

STAMM P, KUMAR P P. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light [J]. Plant Cell Reports, 2013, 32(6): 759−769.
[18]

MARKAKIS M N, BORON A K, van LOOCK B, et al. Characterization of a small auxin-up RNA (SAUR)-like gene involved in Arabidopsis thaliana development[J/OL]. PLoS One, 2013, 8(11): e82596[2025-08-01]. DOI: 10.1371/journal.pone.0082596.
[19]

HU Wenfang, YAN Hanwei, LUO Shuangshuang, et al. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments [J]. Plant Physiology and Biochemistry, 2018, 128: 50−65.
[20]

GUPTA O P, MEENA N L, SHARMA I, et al. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat [J]. Molecular Biology Reports, 2014, 41(7): 4623−4629.
[21]

CHEN Yuzhu, HAO Xi, CAO Jun. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum [J]. Journal of Integrative Plant Biology, 2014, 56(2): 133−150.
[22]

HU Jing, YU Qiushi, JIANG Shengxiu, et al. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in Lycium ruthenicum[J/OL]. PeerJ, 2023, 11: e15941[2025-08-01]. DOI: 10.7717/peerj.15941.
[23]

STORTENBEKER N, BEMER M. The SAUR gene family: the plant’s toolbox for adaptation of growth and development [J]. Journal of Experimental Botany, 2019, 70(1): 17−27.
[24]

ZOU Jingjing, ZHANG Jun, WANG Xiaoqian, et al. Comprehensive transcriptome analysis of AP2/ERFs in Osmanthus fragrans reveals the role of OfERF017-mediated organic acid metabolism pathway in flower senescence[J/OL]. Frontiers in Plant Science, 2024, 15: 1467232[2025-08-01]. DOI: 10.3389/fpls.2024.1467232.
[25]

XIA Hui, ZHANG Yingting, CHEN Xiang, et al. Genome-wide identification of Osmanthus fragrans histone modification genes and analysis of their expression during the flowering process and under azacytidine and ethylene treatments[J/OL]. Plants, 2024, 13(6): 777[2025-08-01]. DOI: 10.3390/plants13060777.
[26]

LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408.
[27]

XI Wan, HE Yanhong, ZHU Linlin, et al. CPTA treatment reveals potential transcription factors associated with carotenoid metabolism in flowers of Osmanthus fragrans [J]. Horticultural Plant Journal, 2021, 7(5): 479−487.
[28]

ZOU Jingjing, LIU Dongxu, CHEN Xiang, et al. A multi-omics database for the biological study of Osmanthus fragrans[J/OL]. Horticultural Plant Journal, 2024[2025-08-01]. DOI: 10.1016/j.hpj.2024.05.011.
[29]

SPARTZ A K, LEE S H, WENGER J P, et al. The saur19 subfamily of small auxin up RNA genes promote cell expansion [J]. The Plant Journal, 2012, 70(6): 978−990.
[30]

BEMER M, van MOURIK H, MUIÑO J M, et al. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture [J]. Journal of Experimental Botany, 2017, 68(13): 3391−3403.
[31] 周洁, 温泽文, 梅圆圆, 等. SAUR72在拟南芥叶片衰老调控中的作用机制[J]. 植物生理学报, 2018, 54(3): 379−385.

ZHOU Jie, WEN Zewen, MEI Yuanyuan, et al. The mechanism underlying the role of SAUR72 in Arabidopsis leaf senescence regulation [J]. Plant Physiology Journal, 2018, 54(3): 379−385.
[32]

KANT S, BI Yongmei, ZHU Tong, et al. SAUR39 a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice[J]. Plant Physiology, 2009, 151(2): 691−701.
[33] 朱诚, 刘非燕, 郭达初, 等. 桂花开花和衰老过程中乙烯及脂质过氧化水平初探[J]. 园艺学报, 1998, 25(3): 275−279.

ZHU Cheng, LIU Feiyan, GUO Dachu, et al. A preliminary study on ethylene production and lipid peroxidation in florescence and flower senescence of Osmanthus fragrans Lour. [J]. Acta Horticulturae Sinica, 1998, 25(3): 275−279.
[34] 陈洪国, 刘顺枝. 湖北咸宁地区桂花开花和衰老过程中花瓣的某些生理生化指标变化[J]. 植物生理学通讯, 2006, 42(1): 112−114.

CHEN Hongguo, LIU Shunzhi. Changes in some metabolite on petal during florescence and senescence of Osmanthus fragrans Lour. [J]. Plant Physiology Communications, 2006, 42(1): 112−114.
[35]

ZOU Jingjing, ZHOU Yuan, CAI Xuan, et al. Increase in DNA fragmentation and the role of ethylene and reactive oxygen species in petal senescence of Osmanthus fragrans [J]. Postharvest Biology and Technology, 2014, 93: 97−105.
[36]

LI Yaoyao, ZHANG Juan, QI Chunyan, et al. lncRNA-encoded small peptide promotes viral infection[J/OL]. Molecular Plant Pathology, 2025, 26(4): e70084[2025-08-01]. DOI: 10.1111/mpp.70084.