[1] DISSANAYAKA D M S B, PLAXTON W C, LAMBERS H, et al. Molecular mechanisms underpinning phosphorus-use efficiency in rice [J]. Plant,Cell &Environment, 2018, 41(7): 1483 − 1496.
[2] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review [J]. Plant and Soil, 2001, 237(2): 173 − 195.
[3] KYLA S, WILLIAM P. Molecular mechanisms of phosphorus metabolism and transport during leaf senescence [J]. Plants, 2015, 4(4): 773 − 798.
[4] VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus-use efficiency in crop plants [J]. New Phytologist, 2012, 195(2): 306 − 320.
[5] PLAXTON W, TRAN H T. Metabolic adaptations of phosphate-starved plants [J]. Plant Physiology, 2011, 156(3): 1006 − 1015.
[6] MEHRA P, GIRI J. Rice and chickpea GDPDs are preferentially influenced by low phosphate and CaGDPD1 encodes an active glycerophosphodiester phosphodiesterase enzyme [J]. Plant Cell Reports, 2016, 35(8): 1699 − 1717.
[7] ZHENG Bin, CHEN Dan, FARQUHAR M G. MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(8): 3999 − 4004.
[8] CORDA D, MOSCA M G, OHSHIMA N, et al. The emerging physiological roles of the glycerophosphodiesterase family [J]. The FEBS Journal, 2014, 281(4): 998 − 1016.
[9] LEMIEUX M J, HUANG Yafei, WANG Daneng. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation [J]. Research in Microbiology, 2004, 155(8): 623 − 629.
[10] 王欣. 拟南芥AtGDPD5基因在低磷环境下功能的研究[D]. 哈尔滨: 东北农业大学, 2011.

WANG Xin. Studies on the Function of Arabidopsis AtGDPD5 Gene in Low Phosphorus Environment [D]. Harbin: Northeast Agricultural University, 2011.
[11]

van der REST B, BOISSON A M, GOUT E, et al. Glycerophosphocholine metabolism in higher plant cells. evidence of a new glyceryl-phosphodiester phosphodiesterase [J]. Plant Physiology, 2002, 130(1): 244 − 255.
[12]

MEHRA P, PANDEY B K, VERMA L, et al. A novel glycerophosphodiester phosphodiesterase improves phosphate deficiency tolerance in rice [J]. Plant,Cell &Environment, 2019, 42(4): 1167 − 1179.
[13] 王桂峰, 张杰, 王安琪. 全国棉花生产格局时景下山东省棉花生产保护区支撑体系构建[J]. 山东农业科学, 2020, 52(5): 130 − 135.

WANG Guifeng, ZHANG Jie, WANG Anqi. Construction of support system for cotton production protection reserve in Shandong Province under national cotton production pattern [J]. Shandong Agricultural Sciences, 2020, 52(5): 130 − 135.
[14] 王桂峰, 徐勤青, 王安琪. 近二十年全国及山东植棉变化与山东省棉花生产保护区支撑体系构建思考[J]. 棉花科学, 2020, 42(1): 3 − 13.

WANG Guifeng, XU Qinqing, WANG Anqi. Changes of cotton planting in China and Shandong Province in recent 20 years and the construction of supporting system of cotton production protection area in Shandong Province [J]. Cotton Sciences, 2020, 42(1): 3 − 13.
[15] 张敏, 盛建东, 白灯莎·买买提艾力, 等. 不同磷效率棉花根系形态和磷酸酶活性对供磷强度的响应[J]. 棉花学报, 2017, 29(3): 283 − 291.

ZHANG Min, SHENG Jiandong, Baidengsha Maimaitiaili, et al. Response of root morphology and phosphatase activity of cotton to phosphorus supply [J]. Cotton Science, 2017, 29(3): 283 − 291.
[16]

PAZ-ARES J, PUGA M I, ROJAS-TRIANA M, et al. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications [J]. Molecular Plant, 2022, 15(1): 104 − 124.
[17]

CHENG Yuxiang, ZHOU Wenbin, SHEERY N I E, et al. Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation [J]. The Plant Journal, 2011, 66(5): 781 − 795.
[18]

CHENG Lingyun, BUCCIARELLI B, LIU Junqi, et al. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases [J]. Plant Physiology, 2011, 156(3): 1131 − 1148.