[1] WU Zuoting, DIJKSTRA P, KOCH G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation [J]. Global Change Biol, 2011, 17(2): 927-942.
[2] SUNDQUIST E T. The global carbon dioxide budget [J]. Science, 1993, 259(5097): 935-941.
[3] ESWARAN H, van DEN-BERG E, REICH P. Organic carbon in the soils of the World [J]. Soil Sci Am J, 1993, 57(1): 192-194.
[4] BALDOCK J A. Composition and cycling of organic carbon in soil [G]// [s.n.]. Nutrient Cycling in Terrestrial Ecosystems. Berlin: Springer, 2007: 1-35.
[5] KELL D B. Breeding crop plants with deep roots: their role in sustainable carbon nutrient and water sequestration [J]. Ann Bot, 2011, 108(3): 407-418.
[6] RAICH J W, P0TTER C S, BHAGAWATI D. Inter annual variability in global soil respiration [J]. Global Change Biol, 2002, 8(8): 800-812.
[7] WATSON R T. Land Use, Land Use Change, and Forestry: A Special Report of the IPCC[M]. Cambridge: Cambridge University Press, 2000.
[8] POST W M, KWON K C. Soil carbon sequestration and land use change: processes and potential [J]. Global Change Biol, 2000, 6(3): 317-327.
[9] LAL R. The potential of soils of the tropics to sequester carbon and mitigate the greenhouse effect [J]. Adv Agron, 2002, 76: 1-30.
[10] SMITH P. Land use change and soil organic carbon dynamics [J]. Nut Cycling Agroecosyst, 2008, 81(2): 169-178.
[11] BARRÈ P T, EGLIN T, CHRISTENSEN B T, et al. Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments [J]. Biogeosciences, 2010, 7(11): 3839-3850.
[12] SIX J, JASTROW J D. Organic matter turnover [J]. Encycl Soil Sci, 2002, 53: 936-942.
[13] TAN Z, LAL R, OWENS L, et al. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice [J]. Soil Tillage Res, 2007, 92(1): 53-59.
[14] YIN Yunfeng, CAI Zucong. Equilibrium of organic matter in heavy fraction for three long-term field experimental soils in China [J]. Pedosphere, 2006, 16(2): 177-184.
[15] CAMBARDELLA C A, ELLIOTT E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils [J]. Soil Sci Soc Am J, 1994, 58(1): 123-130.
[16] SKJEMSTAD J O, CLARKE P, TAYLOR J A, et al. The chemistry and nature of protected carbon in soil [J]. Soil Res, 1996, 34(2): 251-271.
[17] PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths [J]. Soil Biol Biochem, 2005, 37(1): 117-124.
[18] PARR J, SULLIVAN L, CHEN Bihua, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species [J]. Global Change Biol, 2010, 16(10): 2661-2667.
[19] SONG Zhaoliang, PARR J F, GUO Fengshan. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization [J]. Plos One, 2013, 8(9): e73747. doi: 10.1371/journal/pone. 0073747.
[20] PARTON W J, SCHIMEL D S. COLE CV, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands [J]. Soil Sci Soc Am J, 1987, 51(5): 1173-1179.
[21] BRADY N C, WEIL R R. The Nature and Properties of Soils[M]. Upper Saddle River: Prentice-Hall Inc., 1996: 501-522.
[22] JENKINSON D S, RAYNER J H. The turnover of soil organic matter in some of the Rothamsted classical experiments [J]. Soil Sci, 1977, 123(5): 298-305.
[23] PAUTIAN K, PARTON W J, PERSSON J. Modeling soil organic matter in organic-amended and nitrogen-fertiliz-ed long-term plots [J]. Soil Sci Soc Am J, 1992, 56(2): 476-488.
[24] PIPERNO D R. Phytoliths: A Comprehensive Guide for Archmeologists and Paleoecologists [M]. Oxford: AltaMira Press, 2006: 117-124.
[25] 王永吉. 植物硅酸体化学成分的研究[J]. 黄渤海海洋, 1998, 16(3): 33-37.

WANG Yongji. A study on the chemical composion of phytoliths [J]. J Oceanogr Huanghai Bohai, 1998, 16(3): 33-37.
[26] 张新荣, 胡克, 王东坡, 等. 植硅体研究及其应用的讨论[J]. 世界地质, 2004, 23(2); 112-117.

ZHANG Xinrong, HU Ke, WANG Dongpo, et al. Discussion on research and application of phytolith [J]. Global Geol, 2004, 23(2): 112-117.
[27]

ELBAUM R, MELAMED-BESSUDO C, TUROSS N, et al. New methods to isolate organic-materials from silic-ified phytoliths reveal fragmented glycoproteins butno DNA [J]. Quaternary Int, 2009, 193(1): 11-19.
[28]

WILDING L P. Radiocarbon dating of biogenetic opal [J]. Science, 1967, 156(3771): 66-67.
[29] 吕厚远. 植硅体分析在古气候、古环境与农业考古研究中的应用[R]. 北京: 中国科学院地质与地球物理研究所, 2012.

LÜ Houyuan. Application of Phytolith Analysis in the Studies of Ancient Climate, Ancient Environment, and Agricultural Archaeology [R]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2012.
[30]

ALEXANDRE A, MEUNIER J D, LEZINE A M, et al. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa [J]. Palaeogeogr, Palaeoclimatol Palaeoecol, 1997, 136(1): 213-229.
[31]

LI Rencheng, CARTER J A, XIE Shucheng, et al. Phytoliths and microcharcoal at Jinluojia archeological site in middle reaches of Yangtze River indicative of paleoclimate and human activity during the last 3000 years [J]. J Archaeol Sci, 2010, 37(1): 124-132.
[32]

FISHKIS O, INGWERSEN J, LAMERS M, et al. Phytolith transport in soil: a field study using fluorescent labeling[J]. Geoderma, 2010, 157(1/2): 27-36.
[33]

FISHKIS O, INGWERSEN J, STRECK T. Phytolith transport in sandy sediment: Experiments and modeling [J]. Geoderma, 2009, 151(3/4): 168-178.
[34] 林维雷. 亚热带重要森林类型土壤植硅体碳的研究[D]. 临安: 浙江农林大学, 2015.

LIN Weilei. Study on Phytolith-occluded Carbon in Soil Under Important Forest Kinds [D]. Lin'an: Zhejiang A & F University, 2015.
[35]

FISHER R F, BOURN C N, FISHER W F. Opal phytoliths as an indicator of the floristics of prehistoric grasslands[J]. Geoderma, 1995, 68(4): 243-255.
[36] 陈留美, 张甘霖. 水耕人为土时间序列的植硅体及其闭留碳演变特征[J]. 土壤通报, 2011, 42(5): 1025-1030.

CHEN Liumei, ZHANG Ganlin. Phytoliths and its occluded organic carbon in a Stagnic Anthrosols Chronosequence [J]. Chin J Soil Sci, 2011, 42(5): 1025-1030.
[37] 李仁成, 农日正, 何伟松. 碳酸盐岩红土风化成因的植硅体记录[J]. 科技风, 2012(5): 188.

LI Rencheng, NONG Rizheng, HE Weisong. Phytolith records of weathering origin of red soil derived from carbonate rock [J]. Technol Wind, 2012(5): 188.
[38]

SCHLESINGER W H. Evidence from chronosequence studies for the low carbon storage potential of soils [J]. Nature, 1990, 348(6298): 232-234.
[39]

WILDING L P. Radiocarbon dating of biogenetic opal [J]. Science, 1967, 156(3771): 66-67.
[40]

CHRISTENSEN B T. Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure [G] COLEMAN K, JENKINSON D S. Evaluation of Soil Organic Matter Models. Berlin: Springer, 1996: 143-159.
[41]

TRUMBORE S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements[J]. Global Biogeochem Cycl, 1993, 7(2): 275-290.
[42]

PAUL E A. Dynamics of organic matter in soils [J]. Plant Soil, 1984, 76(1/3): 275-285.
[43]

ALEXANDRE A, MEUNIER J D, COLIN F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes [J]. Geochim Cosmoch Acta, 1997, 61(3): 677-682.
[44] 汪秀芳, 陈圣宾, 宋爱琴, 等. 植物在硅生物地球化学循环过程中的作用[J]. 生态学杂志, 2007, 26(4): 595-600.

WANG Xiufang, CHEN Shengbin, SONG Aiqin, et al. Roles of plants in biogeochemical cycling of silicon [J]. Chin J Ecol, 2007, 26(4): 595-600.
[45]

FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions [J]. Chem Geol, 2009, 258(3): 197-206.
[46]

BARTOLI F, WILDING L P. Dissolution of biogenic opal as a function of its physical and chemical properties [J]. Soil Sci Soc Am J, 1980, 44(4): 873-878.
[47]

CABANES D, WEINER S, SHAHACK-GROSS R. Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths [J]. J Archaeol Sci, 2011, 38(9): 2480-2490.
[48]

MA Jianfeng, TAKAHASHI E. Soil, Fertilizer, and Plant Silicon Research in Japan [M]. Amsterdam: Elsevier, 2002.
[49]

MITANI N, MA Jianfeng. Uptake system of silicon in different plant species [J]. J Exp Bot, 2005, 56(414): 1255-1261.
[50]

TAKAHASHI E, MA Jianfeng, MIYAKE Y. The possibility of silicon as an essential element for higher plants[J]. Comment Agric Food Chem, 1990, 2(2): 99-102.
[51]

MOTOMURA H, MITA N, SUZUKI M. Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder (Poaceae-Bambusoideae) [J]. Ann Bot, 2002, 90(1): 149-152.
[52] 王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1993.
[53]

ALBERT R M, BAMFORD M K, DAN C. Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples [J]. Quaternary Int, 2006, 148(1): 78-94.
[54]

WILDING L P, DREES L R. Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils [J]. Clays Clay Miner, 1974, 22(3): 295-306.
[55]

CARNELLI A L, MADELLA M, THEURILLAT J P, et al. Aluminum in the opal silica reticule of phytoliths: a new tool in palaeoecological studies [J]. Am J Bot, 2002, 89(2): 346-351.
[56]

RAJENDIRAN S, COUMAR M V, AJAY S K, et al. Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems [J]. Currt Sci, 2012, 103(8): 911-920.
[57] 耿云霞, 李依玲, 朱莎, 等. 盐碱胁迫下羊草植硅体的形态变化[J]. 植物生态学报, 2011, 35(11): 1148-1155.

GENG Yunxia, LI Yiling, ZHU Sha, et al. Morphological changes of phytoliths in Leymus chinensis under saline-alkali stress [J]. Chin J Plant Ecol, 2011, 35(11): 1148-1155.
[58]

FARMER V C, DELBOS E, MILLER J D. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams [J]. Geoderma, 2005, 127(1): 71-79.
[59]

GÈRARD F, MAYER K U, HODSON M J, et al. Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem [J]. Geochim Cosmochim Acta, 2008, 72(3): 741-758.
[60]

KARKANAS P. Preservation of anthropogenic materials under different geochemical processes: a mineralogical approach [J]. Quaternary Int, 2010, 214(1): 63-69.
[61]

FRAYSSE F, CANTAIS F, POKROVSKY O S, et al. Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon [J]. J Geochem Exp, 2006, 88(1/3): 202-205.
[62]

FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface properties, solubility and dissolution kinetics of bamboo phytoliths [J]. Geochim Cosmochim Acta, 2006, 70(8): 1939-1951.
[63]

FRAYSSE F, POKROVSKY O, SCHOTT J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions [J]. Chem Geol, 2009, 258(3/4): 197-206.
[64]

LOUCAIDES S, BEHRENDS T, van CAPPELLEN P. Reactivity of biogenic silica: Surface versus bulk charge density[J]. Geochim Cosmochim Acta, 2010, 74(2): 517-530.
[65]

LOUCAIDES S, CAPPELLEN P V, BEHRENDS T, et al. Dissolution of biogenic silica from land to ocean: The role of salinity and pH [J]. Limnol Oceanogr, 2008, 53(4): 1614-1621.
[66]

CABANNES D, WEINER S, SHAHACKk-GROSS R. Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths [J]. J Archaeol Sci, 2011, 38(9): 2480-2490.
[67] 杨杰, 李永夫, 黄张婷, 等. 碱溶分光光度法测定植硅体碳含量[J]. 分析化学, 2014, 42(9): 1389-1390.

YANG Jie, LI Yongfu, HUANG Zhangting, et al. Determination of phytolith-occluded carbon content using alkali dissolution-spectrophotometry [J]. Chin J Anal Chem, 2014, 42(9): 1389-1390.
[68] 介冬梅, 刘朝阳, 石连旋, 等. 松嫩平原不同生境羊草植硅体形态特征及环境意义[J]. 中国科学: 地球科学, 2010, 40(4): 493-502.

JIE Dongmei, LIU Chaoyang, SHI Lianxuan, et al. Characteristics of phytoliths in Leymus chinensis from different habitats on the Songnen Plain in Northeast China and their environmental implications [J]. Sci China Earth Sci, 2010, 40(4): 493-502.
[69]

LIU Lidan, JIE Dongmei, LIU Hongyan, et al. Response of phytoliths in Phragmites communis to humidity in NE China [J]. Quaternary Int, 2013, 304(7): 193-199.
[70]

ROSEN A M, WEINER S. Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat [J]. J Archaeol Sci, 1994, 21(1): 125-132.
[71]

MITHEN S, JENKINS E, JAMJOUM K, et al. Experimental crop growing in Jordan to develop methodology for the identification of ancient crop irrigation [J]. World Archaeol, 2008, 40(1): 7-25.
[72]

MADELLA M, JONES M K, ECHLIN P, et al. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones [J]. Quaternary Int, 2009, 193(1): 32-40.
[73]

JENKINS E, JAMJOUM K, NUIMATT S. 21 irrigation and phytolith formation: an experimental study [G]//MITHEN S, BLACK E. Water, Life and Civilization: Climate, Environment and Society in the Jordan Valley. Cambridge University Press, 2011: 347-372.
[74]

WEBB E A, LONGSTAFFE F J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass [J]. Geochim Cosmochim Acta, 2002, 66(11): 1891-1904.
[75]

WEBB E A, LONGSTAFFE F J. Limitations on the climatic and ecological signals provided by the δ13C values of phytoliths from a C4 North American prairie grass[J]. Geochim Cosmochim Acta, 2010, 74(11): 3041-3050.
[76] 高素华, 郭建平. CO2浓度和土壤湿度对羊草光合特性影响机理的初探[J]. 草业科学, 2004, 21(5): 23-27.

GAO Suhua, GUO Jianping. Initial study into the CO2 concentration and soil moisture effects on the photosynthesis impact mechanism of Leymus chinensis [J]. Pratac Sci, 2004, 21(5): 23-27.
[77]

LI Nannan, JIE Dongmei, GE Yong, et al. Response of phytoliths in Phragmites communis to elevated CO2 concentration in Songnen Grassland, China [J]. Quaternary Int, 2014, 321(3): 97-104.
[78] 葛勇, 介冬梅, 郭继勋, 等. 松嫩草原羊草植硅体对模拟全球CO2浓度升高的响应研究[J]. 科学通报, 2010, 55(27/28): 2735-2741.

GE Yong, JIE Dongmei, GUO Jixun, et al. Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen grassland, China [J]. Chin Sci Bull, 2010, 55(27/28): 2735-2741.
[79]

GOH K M. Carbon dating [G]//COLOMAN D C. Carbon Isotope Techniques. San Diego: Academic Press, 1991: 125-145.
[80]

AMELUNG W, BRODOWSKI S, SANDHAGE-HOFMANN A, et al. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter [J]. Adv Agron, 2008, 100: 155-250.
[81]

ZUO Xinxin, LÜ Houyuan. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chin Sci Bull, 2011, 56(32): 3451-3456.
[82]

LI Zimn, SONG Zhaoliang, PARR J F, et al. Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration [J]. Plant Soil, 2013, 370(1/2): 615-623.
[83]

PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant Soil, 2011, 342(1/2): 165-171.
[84]

PARR J, SULLIVAN L, QUIRK R. Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction [J]. Sugar Tech, 2009, 11(1): 17-21.
[85]

SONG Zhaoliang, LIU Hongyan, SI Yong, et al. The production of phytoliths in China's grasslands: implications to the biogeochemical sequestration of atmospheric CO2 [J]. Glob Change Biol, 2012, 18(12): 3647-3653.
[86] 李自民, 宋照亮, 李蓓蕾, 等. 杭州西溪湿地植物植硅体产生及其影响因素[J]. 浙江农林大学学报, 2013, 30(4): 470-476.

LI Zimin, SONG Zhaoliang, LI Beilei, et al. Phytolith production in wetland plants of the Hangzhou Xixi Wetlands ecosystem [J]. J Zhejiang A & F Univ, 2013, 30(4): 470-476.
[87]

LI Zimin, SONG Zhaoliang, LI Beilei. The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China [J]. Appl Geochem, 2013, 37(10): 117-124.
[88]

LI Zimin, SONG Zhaoliang, JIANG Peikun. Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China [J]. Chin Sci Bull, 2013, 58(20): 2480-2487.
[89]

SONG Zhaoliang, LIU Hongyan, LI Beilei, et al. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration [J]. Glob Change Biol, 2013, 19(9): 2907-2915.
[90] 李蓓蕾, 宋照亮, 姜培坤, 等. 毛竹林生态系统植硅体的分布及其影响因素[J]. 浙江农林大学学报, 2014, 31(4): 547-553.

LI Beilei, SONG Zhaoliang, JIANG Peilkun, et al. Phytolith distribution and carbon sequestration in China with Phyllostachys edulis [J]. J Zhejiang A & F Univ, 2013, 31(4): 547-553.