[1] ZHANG Yi, CHEN Haoting, LIANG Ying, et al. Comparative transcriptomic and metabolomic analyses reveal the protective effects of silicon against low phosphorus stress in tomato plants [J]. Plant Physiology and Biochemistry, 2021, 166: 78 − 87.
[2] KIM Y, CHUNG Y S, LEE E, et al. Root response to drought stress in rice (Oryza sativa L. ) [J/OL]. International Journal of Molecular Sciences, 2020, 21(4): 1513[2022-03-01]. doi:10.3390/ijms21041513.
[3] MA Xiaofan, LI Haigang, ZHANG Junling, et al. Spatiotemporal pattern of acid phosphatase activity in soils cultivated with maize sensing to phosphorus-rich patches[J/OL]. Frontiers in Plant Science, 2021, 12: 650436[2022-03-01]. doi: 10.3389/fpls.2021.650436.
[4] 黄宇, 张海伟, 徐芳森. 植物酸性磷酸酶的研究进展[J]. 华中农业大学学报, 2008, 27(1): 148 − 154.

HUANG Yu, ZHANG Haiwei, XU Fangsen. Research summarization on acid phosphatase in higher plants [J]. Journal of Huazhong Agricultural University, 2008, 27(1): 148 − 154.
[5]

FAN Jingwei, YANG Xiaowei, WANG Tao, et al. Contrasting growth, photosynthesis, antioxidant responses and water use efficiency in two Medicago sativa L. genotypes under different phosphorus and soil water conditions[J/OL]. Agronomy, 2020, 10(10): 1534[2022-03-01]. doi: 10.3390/agronomy10101534.
[6]

TIWARI P, SHARMA P K. Decrypting the effects of starvation and excess of nitrogen and phosphorus on Nostoc calcicola [J]. Journal of Stress Physiology &Biochemistry, 2021, 17(2): 5 − 19.
[7] 欧阳泽怡, 陈雯彬, 欧阳硕龙, 等. 低磷胁迫对赤皮青冈幼苗叶片生理指标的影响[J]. 中南林业科技大学学报, 2021, 41(1): 69 − 79.

OUYANG Zeyi, CHEN Wenbin, OUYANG Shuolong, et al. Effects of low phosphorus stress on physiological characteristics of Cyclobalanopsis gilva seedling leaves [J]. Journal of Central South University of Forestry &Technology, 2021, 41(1): 69 − 79.
[8] 国家林业和草原局. 中国森林资源报告(2014—2018)[R]. 北京: 中国林业出版社, 2019.

National Forestry and Grassland Administration. China Forest Resources Report(2014−2018)[R]. Beijing: China Forestry Publishing House, 2019.
[9]

PAN Xiaocheng, HU Haibo. Transcriptome analysis of low phosphate stress response in the roots of masson pine (Pinus massoniana) seedlings[J/OL]. Acta Physiologiae Plantarum, 2020, 42(12): 176[2022-03-01]. doi: 10.21203/rs.2.14498/v1.
[10] 曹升, 胡华英, 张虹, 等. 我国南方人工林土壤有效磷匮乏原因及对策分析[J]. 世界林业研究, 2019, 32(3): 78 − 84.

CAO Sheng, HU Huaying, ZHANG Hong, et al. Causes and countermeasures of plantation soil available phosphorus deficiency in southern China [J]. World Forestry Research, 2019, 32(3): 78 − 84.
[11] 胡支舰, 庾金武, 陈健, 等. 氮沉降对低磷胁迫下毛竹实生幼苗生长及土壤化学特性的影响[J]. 浙江林业科技, 2021, 41(2): 17 − 22.

HU Zhijian, YU Jinwu, CHEN Jian, et al. Effect of nitrogen deposition on growth of Phyllostachys edulis seedlings and soil chemical properties under low phosphorus stress [J]. Journal of Zhejiang Forestry Science and Technology, 2021, 41(2): 17 − 22.
[12]

LIU Juxiu, HUANG Wenjuan, ZHOU Guoyi, et al. Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests [J]. Global Change Biology, 2013, 19(1): 208 − 216.
[13]

DONG Chengcheng, WANG Wei, LIU Hongyan, et al. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition [J]. Ecological Indicators, 2019, 101: 453 − 464.
[14]

FUJITA Y, ROBROEK B J M, RUITER P C D, et al. Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity [J]. Oikos, 2010, 119(10): 1665 − 1673.
[15] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992.

National Soil Census Office. The Technique of Soil Survey in China[M]. Beijing: Agricultural Press, 1992.
[16] 简尊吉, 倪妍妍, 徐瑾, 等. 中国马尾松林土壤肥力特征[J]. 生态学报, 2021, 41(13): 5279 − 5288.

JIAN Zunji, NI Yanyan, XU Jin, et al. Soil fertility in the Pinus massoniana forests of China [J]. Acta Ecologica Sinica, 2021, 41(13): 5279 − 5288.
[17] 徐向华, 丁贵杰. 马尾松适应低磷胁迫的生理生化响应[J]. 林业科学, 2006, 42(9): 24 − 28.

XU Xianghua, DING Guijie. Physiological and biochemical responses of Pinus massoniana to low phosphorus stress [J]. Scientia Silvae Sinicae, 2006, 42(9): 24 − 28.
[18] 谢钰容, 周志春, 金国庆, 等. 低P胁迫对马尾松不同种源根系形态和干物质分配的影响[J]. 林业科学研究, 2004, 41(3): 58 − 62.

XIE Yurong, ZHOU Zhichun, JIN Guoqing, et al. Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances [J]. Forest Research, 2004, 41(3): 58 − 62.
[19] 唐敏. 磷对不同种源马尾松种子及幼苗影响的研究[D]. 贵阳: 贵州大学, 2007.

TANG Min. Study on Effect of Phosphorus to Germination and Seedling of Pinus massoniana Different Provenances[D]. Guiyang: Guizhou University, 2007.
[20] 周政贤. 中国马尾松[M]. 北京: 中国林业出版社, 2001.

ZHOU Zhengxian. Masson Pine in China[M]. Bejing: China Forestry Publishing House, 2001.
[21] 张志良, 李小方. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016.

ZHANG Zhiliang, LI Xiaofang. Experimental Guide for Plant Physiology [M]. 5th ed. Beijing: Higher Education Press, 2016.
[22] 胡华群. 磷对辣椒根系生长发育及生理代谢的影响[D]. 贵阳: 贵州大学, 2009.

HU Huaqun. Effect of Phosphate on Growth Development and Physiological Metabolism of Hot Pepper Roots[D]. Guiyang: Guizhou University, 2009.
[23]

DAVEY M W, STALS E, PANIS B, et al. High-throughput determination of malondialdehyde in plant tissues [J]. Analytical biochemistry, 2005, 347(2): 201 − 207.
[24]

WANG Liangsheng, LIU Dong. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants [J]. Plant Science, 2018, 271: 108 − 116.
[25]

ZAHEER A, MUHAMMAD A, GILL M A, et al. Intra-Specific variations of phosphorus utilization efficiency [J]. Pakistan Journal of Biological Sciences, 2000, 3(4): 1149 − 1171.
[26] 程丽莉, 曹伟, 刘智, 等. 低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响[J]. 北京林业大学学报, 2006, 28(6): 46 − 50.

CHENG Lili, CAO Wei, LIU Zhi, et al. Effects of phosphate deficiency on the growth and acid phosphatase activity of Larix gmelinii seedlings [J]. Journal of Beijing Forestry University, 2006, 28(6): 46 − 50.
[27] 谢钰容, 周志春, 廖国华, 等. 低磷胁迫下马尾松种源酸性磷酸酶活性差异[J]. 林业科学, 2005, 41(3): 58 − 62.

XIE Yurong, ZHOU Zhichun, LIAO Guohua, et al. Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances [J]. Scientia Silvae Sinicae, 2005, 41(3): 58 − 62.
[28] 俞元春, 余健, 房莉, 等. 缺磷胁迫下马尾松和杉木苗根系有机酸的分泌[J]. 南京林业大学学报(自然科学版), 2007, 31(2): 9 − 12.

YU Yuanchun, YU Jian, FANG Li, et al. Organic acids exudation from the roots of Cunninghamia lanceolata and Pinus massoniana seedlings under low phosphorus stress [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(2): 9 − 12.
[29]

LIU Ruixian, ZHOU Zhiguo, GUO Wenqi, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L. ) plants [J]. Agricultural Water Management, 2008, 95(11): 1261 − 1270.
[30] 徐惠龙. 磷高效水稻根系响应低磷胁迫的生理特性与相关蛋白研究[D]. 福州: 福建农林大学, 2007.

XU Huilong. Study on the Physiological Response and Related Proteins in Root of Rice (Oryza satava L. ) with High P Efficiency to Low Phosphate Stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007.
[31] 崔博文. 马尾松种质评价及生长性状相关QTL的初步定位[D]. 贵阳: 贵州大学, 2017.

CUI Bowen. Evaluation of Germplasm Resources and Growth-trait-related QTL Mapping in Masson Pine (Pinus massoniana Lamb) [D]. Guiyang: Guizhou University, 2017.
[32] 乔光, 崔博文, 文晓鹏, 等. 不同种源马尾松幼苗对低磷胁迫的生理响应[J]. 种子, 2017, 36(8): 32 − 36, 41.

QIAO Guang, CUI Bowen, WEN Xiaopeng, et al. Physiological and biochemical responses to low phosphorus stress for different Masson pine (Pinus massoniana) provenances [J]. Seed, 2017, 36(8): 32 − 36, 41.
[33] 姜仕昆, 周运超, 谭伟, 等. 马尾松林近自然不同经营管理措施下土壤肥力[J]. 浙江农林大学学报, 2020, 37(5): 876 − 882.

JIANG Shikun, ZHOU Yunchao, TAN Wei, et al. Soil fertility of Pinus massoniana forests under different near-natural management measures [J]. Journal of Zhejiang A&F University, 2020, 37(5): 876 − 882.
[34] 周建菲, 史文辉, 潘凯婷, 等. 低磷胁迫对毛竹幼苗生长和养分生理的影响[J]. 浙江农林大学学报, 2022, 39(5): 1010 − 1017.

ZHOU Jianfei, SHI Wenhui, PAN Kaiting, et al. Effect of low phosphorus stress on growth and nutrient physiology of Phyllostachys edulis seedlings [J]. Journal of Zhejiang A&F University, 2022, 39(5): 1010 − 1017.
[35] 王艺雄, 张华锋, 李全, 等. 氮添加对毛竹林土壤磷组分的影响[J]. 浙江农林大学学报, 2022, 39(4): 695 − 704.

WANG Yixiong, ZHANG Huafeng, LI Quan, et al. Effect of nitrogen addition on soil phosphorus fractions in the Phyllostachys edulis plantation [J]. Journal of Zhejiang A&F University, 2022, 39(4): 695 − 704.
[36]

LIU Yukun, HE Chengzhong. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD [J]. Plant Cell Reports, 2016, 35(5): 995 − 1007.
[37]

HAJLAOUI H, DENDEN M, EI AYEB N, et al. Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L. ) roots [J]. Acta Physiologiae Plantarum, 2009, 31(4): 787 − 796.
[38]

JANERO D R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury [J]. Free Radical Biology &Medicine, 1990, 9(6): 515 − 540.
[39] 于姣妲, 夏丽丹, 殷丹阳, 等. 磷素对杉木幼苗耐铝性的影响机制[J]. 林业科学, 2018, 54(5): 36 − 47.

YU Jiaoda, XIA Lidan, YIN Danyang, et al. Effects of phosphorus on aluminum tolerance of Chinese fir seedlings [J]. Scientia Silvae Sinicae, 2018, 54(5): 36 − 47.