[1] SEYMOUR G B, ØSTERGAARD L, CHAPMAN N H, et al. Fruit development and ripening [J]. Ann Rev Plant Biol, 2013, 64: 219 − 241.
[2] 张怀龙, 赵俊芳, 张兆欣, 等. 核桃果实发育动态规律研究[J]. 北方园艺, 2012(5): 38 − 39.

ZHANG Huailong, ZHAO Junfang, ZHANG Zhaoxin, et al. Research on growth dynamic law of walnut fruit [J]. Northern Hortic, 2012(5): 38 − 39.
[3] 韩明玉, 田玉命, 张慧梅, 等. 秦光油桃果实生长曲线和落果波相的观察[J]. 西北植物学报, 2001, 21(6): 1249 − 1253.

HAN Mingyu, TIAN Yuming, ZHANG Huimei, et al. Observation of the fruit growth curve of nectarine ‘Qinguang’ [J]. Acta Bot Boreal-Occident Sin, 2001, 21(6): 1249 − 1253.
[4] 解红恩, 黄有军, 薛霞铭, 等. 山核桃果实生长发育规律[J]. 浙江林学院学报, 2008, 25(4): 527 − 531.

XIE Hong’en, HUANG Youjun, XUE Xiaming, et al. Growth and development of the Carya cathayensis nut [J]. J Zhejiang For Coll, 2008, 25(4): 527 − 531.
[5] 王建, 王九龄, 辛学兵. 银杏种子生长特性及其生理变化的研究[J]. 应用生态学报, 2000, 11(4): 507 − 512.

WANG Jian, WANG Jiuling, XIN Xuebin. Seed growth characteristics of Ginkgo biloba and its physiological change [J]. Chin J Appl Ecol, 2000, 11(4): 507 − 512.
[6]

KOMOR E. Source physiology and assimilate transport: the interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem [J]. Funct Plant Biol, 2000, 27(6): 497 − 505.
[7]

KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development [J]. Curr Opin Plant Biol, 2004, 7(3): 235 − 246.
[8]

CHIOU T J, BUSH D R. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet [J]. Plant Physiol, 1996, 110(2): 511 − 520.
[9]

WHITTAKER A, BOTHA F C. Carbon partitioning during sucrose accumulation in sugarcane internodal tissue [J]. Plant Physiol, 1997, 115(4): 1651 − 1659.
[10]

WAN Hongjian, WU Limin, YANG Yuejian, et al. Evolution of sucrose metabolism: the dichotomy of invertases and beyond [J]. Trends Plant Sci, 2018, 23(2): 163 − 177.
[11]

HUBBARD N, PHARR D M, HUBER S C. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric [J]. Plant Physiol, 1990, 94(1): 201 − 208.
[12]

GALTIER N, FOYER C H, MURCHIE E, et al. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L. ) plants over-expressing sucrose phosphate synthase [J]. J Exp Bot, 1995, 46: 1335 − 1344.
[13] 吕英民, 张大鹏. 果实发育过程中糖的积累[J]. 植物生理学报, 2000, 36(3): 258 − 265.

LÜ Yingmin, ZANG Dapeng. Accumulation of sugars in developing fruits [J]. Plant Physiol Commun, 2000, 36(3): 258 − 265.
[14]

KLANN E M, CHETELAT R T, BENNETT A B. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit [J]. Plant Physiol, 1993, 103(3): 863 − 870.
[15]

HIRATSUKA S, NAKAYAMA S, TAMURA S, et al. Translocation and accumulation of fruit-fixed photosynthate in Satsuma mandarin [J]. Plant Growth Regul, 2017, 81(2): 277 − 282.
[16]

KOMATSU A, MORIGUCHI T, KOYAMA K, et al. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships [J]. J Exp Bot, 2002, 53(366): 61 − 71.
[17] 尹培培, 包日双, 戴佳锟, 等. 植物激素对植物器官发生影响的研究进展[J]. 江西农业学报, 2012, 24(6): 37 − 41.

YIN Peipei, BAO Rishuang, DAI Jiakun, et al. Research advance in impact of phytohormone on plant organogenesis [J]. Acta Agric Jiangxi, 2012, 24(6): 37 − 41.
[18] 夏国海, 张大鹏, 贾文锁. IAA、GA和ABA对葡萄果实14C蔗糖输入与代谢的调控[J]. 园艺学报, 2000, 27(1): 6 − 10.

XIA Guohai, ZHANG Dapeng, JIA Wensuo. Effects of IAA, GA and ABA on 14C-sucrose import and metabolism in grape berries [J]. Acta Hortic Sin, 2000, 27(1): 6 − 10.
[19]

KATAOKA K, YASHIRO Y, HABU T, et al. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits [J]. Sci Hortic, 2009, 123(2): 228 − 233.
[20]

WU Jiasheng, HUANG Jiandiao, HONG Yiwei, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway [J]. Ind Crops Prod, 2018, 120: 47 − 60.
[21]

LOU Heqiang, DING Mingzhu, WU Jiasheng, et al. Full-length transcriptome analysis of the genes involved in tocopherol biosynthesis in Torreya grandis [J]. J Agric Food Chem, 2019, 67(7): 1877 − 1888.
[22]

SUO Jinwei, TONG Ke, WU Jiasheng, et al. Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynthesis in Torreya grandis [J]. Ind Crops Prod, 2019, 131: 182 − 193.
[23]

ZHAO Jiangzhe, YU Ningning, JU Min, et al. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice [J]. J Exp Bot, 2019, 70(21): 6277 − 6291.
[24]

NIELSEN T H, SKJÆRBÆ H C, KARLSEN P. Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants [J]. Physiol Plant, 1991, 82(2): 311 − 319.
[25]

LOWELL C, TOMLINSON P T, KOCH K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit [J]. Plant Physiol, 1989, 90(4): 1394 − 1402.
[26]

TANG Guo, STURM A. Antisense repression of sucrose synthase in carrot (Daucus carota L. ) affects growth rather than sucrose partitioning [J]. Plant Mol Biol, 1999, 41(4): 465 − 479.
[27] 刘志敏, 赵宏波, 黄有军, 等. ‘香榧’雌配子体发育和原胚形成的组织学观察[J]. 果树学报, 2017, 34(2): 231 − 237.

LIU Zimin, ZHAO Hongbo, HUANG Youjun, et al. Histological studies on megagametophyte and embryogeny development in Torreya grandis ‘Merrillii’ [J]. J Fruit Sci, 2017, 34(2): 231 − 237.
[28]

MACNEILL G, MEHRPOUYAN S, MINOW M A A, et al. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation [J]. J Exp Bot, 2017, 68(16): 4433 − 4453.
[29]

BORISJUK L, WALENTA S, ROLLETSCHEK H, et al. Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns [J]. Plant J, 2002, 29(4): 521 − 530.
[30] 沙建川, 贾志航, 张鑫, 等. 外源脱落酸对富士苹果果实膨大后期光合产物向果实运输的影响[J]. 应用生态学报, 2019, 30(6): 1854 − 1860.

SHA Jianchuan, JIA Zhihang, ZHANG Xin, et al. Effects of exogenous ABA on translocation of photosynthate to fruit of Fuji apple during late stage of fruit rapid-swelling Chinese [J]. J Appl Ecol, 2019, 30(6): 1854 − 1860.
[31]

GEROMEL C, FERREIRA L P, BOTTCHER A, et al. Sucrose metabolism during fruit development in Coffea racemosa [J]. Ann Appl Biol, 2008, 152(2): 179 − 187.
[32]

ZANOR M I, OSORIO S, NUNES-NESI A, et al. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility [J]. Plant Physiol, 2009, 150(3): 1204 − 1218.
[33]

LI Mingjun, FENG Fengjuan, CHENG Lailiang. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development[J/OL]. PLoS One, 2012, 7(3): e33055[2021-06-27]. doi: 10.1371/journal.pone.0033055.
[34]

LUO Tao, SHUAI Liang, LIAO Lingyan, et al. Soluble acid invertases act as key factors influencing the sucrose/hexose ratio and sugar receding in longan (Dimocarpus longan Lour. ) Pulp [J]. J Agric Food Chem, 2019, 67(1): 352 − 363.
[35]

TANASE K, SHIRATAKE K, MORI H, et al. Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit [J]. Physiol Plant, 2002, 114(1): 21 − 26.
[36]

YAMADA K, KOJIMA T, BANTOG N, et al. Cloning of two isoforms of soluble acid invertase of Japanese pear and their expression during fruit development [J]. Plant Physiol, 2007, 164(6): 750 − 755.
[37]

JIA Haifeng, WANG Yuanhua, SUN Mingzhu, et al. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening [J]. New Phytol, 2013, 198(2): 453 − 465.
[38]

KANAYAMA Y. Sugar metabolism and fruit development in the tomato [J]. Hortic J, 2017, 86(4): 417 − 425.
[39]

NARDOZZA S, BOLDINGH H L, WOHLERS M W, et al. Exogenous cytokinin application to Actinidia chinensis var. deliciosa ‘Hayward’ fruit promotes fruit expansion through water uptake [J/OL]. Hortic Res, 2017, 4(1): hortres201743[2021-07-01]. doi: 10.1038/hortres.2017.43.
[40]

LI Xiongwei, LIU Pan, ZHOU Jingyi, et al. Effects of exogenous application of GA4+7 and NAA on sugar accumulation and related gene expression in peach fruits during developing and ripening stages [J]. J Plant Growth Regul, 2021, 40(4): 962 − 973.
[41]

ALBACETE A, CANTERO-NAVARRO E, BALIBREA M E, et al. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity [J]. J Exp Bot, 2014, 65(20): 6081 − 6095.
[42]

SU Liyan, BASSA C, AUDRAN C, et al. The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion [J]. Plant Cell Physiol, 2014, 55(11): 1969 − 1976.