| [1] | 陈书坤, 俸宇星. 中国植物志: 第45卷第2分册[M]. 北京: 科学出版社, 1999: 1−226. CHEN Shukun, FENG Yuxing. Flora of China: Vol 45 Issue 2[M]. Beijing: Science Press, 1999: 1−226. |
| [2] | 严晓素, 章建红. 冬青属——世界园艺名品[J]. 浙江林业, 2022(11): 20−21. YAN Xiaosu, ZHANG Jianhong. Ilex: a world famous horticultural product [J]. Zhejiang Forestry, 2022(11): 20−21. |
| [3] | 王伟丽, 何立平, 余敏芬, 等. 12个北美冬青品种的ISSR亲缘关系分析[J]. 浙江农林大学学报, 2018, 35(4): 612−617. WANG Weili, HE Liping, YU Minfen, et al. Phylogenetic relationships among 12 cultivars of Ilex verticillata based on ISSR molecular markers [J]. Journal of Zhejiang A&F University, 2018, 35(4): 612−617. |
| [4] | YANG Yi, JIANG Lei, LIU Ende, et al. Time to update the sectional classification of Ilex (Aquifoliaceae): new insights from Ilex phylogeny, morphology, and distribution [J]. Journal of Systematics and Evolution, 2023, 61(6): 1036−1046. |
| [5] | 李冬玲, 付晖, 任全进, 等. 中国华东地区冬青属药用植物资源调查[J]. 中国野生植物资源, 2003, 22(1): 22−24. LI Dongling, FU Hui, REN Quanjin, et al. Medicinal plant resources of Ilex in Eastern China [J]. Chinese Wild Plant Resources, 2003, 22(1): 22−24. |
| [6] | HAO Dacheng, GU Xiaojie, XIAO Peigen, et al. Research progress in the phytochemistry and biology of Ilex pharmaceutical resources [J]. Acta Pharmaceutica Sinica B, 2013, 3(1): 8−19. |
| [7] | WU Peng, GAO Hui, LIU Jianxin, et al. Triterpenoid saponins with anti-inflammatory activities from Ilex pubescens roots [J]. Phytochemistry, 2017, 134: 122−132. |
| [8] | ZHENG Jiao, ZHOU Haiyan, ZHAO Yunfang, et al. Triterpenoid-enriched extract of Ilex kudingcha inhibits aggregated LDL-induced lipid deposition in macrophages by downregulating low density lipoprotein receptor-related protein 1 (LRP1) [J]. Journal of Functional Foods, 2015, 18: 643−652. |
| [9] | LOIZEAU P A, SAVOLAINEN V, ANDREWS S, et al. Aquifoliaceae[C]// KUBITZKI K. The Families and Genera of Vascular Plants. Berlin: Springer, 2016: 31−36. |
| [10] | YAO Xin, SONG Yu, YANG Junbo, et al. Phylogeny and biogeography of the hollies (Ilex L. , Aquifoliaceae)[J]. Journal of Systematics and Evolution, 2021, 59(1): 73−82. |
| [11] | YAO Xin, ZHANG Fan, CORLETT R T. Utilization of the hollies (Ilex L. spp. ): a review[J/OL]. Forests, 2022, 13(1): 94[2024-12-16]. DOI: 10.3390/f13010094. |
| [12] | BERNAL-GALLARDO J J, de FOLTER S. Plant genome information facilitates plant functional genomics[J/OL]. Planta, 2024, 259(5): 117[2024-12-16]. DOI: 10.1007/s00425-024-04397-z. |
| [13] | ZHAO Qiang, FENG Qi, LU Hengyun, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice [J]. Nature Genetics, 2018, 50(2): 278−284. |
| [14] | JIAO Wenbiao, SCHNEEBERGER K. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics[J/OL]. Nature Communications, 2020, 11(1): 989[2024-12-16]. DOI: 10.1038/s41467-020-14779-y. |
| [15] | HUFFORD M B, SEETHARAM A S, WOODHOUSE M R, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[J]. Science, 2021, 373(6555): 655−662. |
| [16] | YAO Xin, LU Zhiqiang, SONG Yu, et al. A chromosome-scale genome assembly for the holly (Ilex polyneura) provides insights into genomic adaptations to elevation in Southwest China[J/OL]. Horticulture Research, 2022, 9: uhab049[2024-12-16]. DOI: 10.1093/hr/uhab049. |
| [17] | SLIWINSKA E. Flow cytometry–a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species [J]. Folia Horticulturae, 2018, 30(1): 103−128. |
| [18] | SU Tao, ZHANG Mengru, SHAN Zhenyu, et al. Comparative survey of morphological variations and plastid genome sequencing reveals phylogenetic divergence between four endemic Ilex species[J/OL]. Forests, 2020, 11(9): 964[2024-12-16]. DOI: 10.3390/f11090964. |
| [19] | 李皎, 周鹏, 张强, 等. 基于流式细胞术的北美冬青基因组大小测定[J]. 中国野生植物资源, 2023, 42(1): 29−34. LI Jiao, ZHOU Peng, ZHANG Qiang, et al. Genome size determination of Ilex verticillata based on flow cytometry [J]. Chinese Wild Plant Resources, 2023, 42(1): 29−34. |
| [20] | GARBEROGLIO M J, GONZÁLEZ G E, KRYVENKI M A, et al. Genome size variation of southern South American species of Ilex (Aquifoliaceae) [J]. Darwiniana, Nueva Serie, 2023, 11(1): 167−179. |
| [21] | ZHOU Peng, LI Jiao, HUANG Jing, et al. Genome survey sequencing and genetic background characterization of Ilex chinensis Sims (Aquifoliaceae) based on next-generation sequencing[J/OL]. Plants, 2022, 11(23): 3322[2024-12-16]. DOI: 10.3390/plants11233322. |
| [22] | ZHOU Peng, ZHANG Qiang, LI Jiao, et al. A first insight into the genomic background of Ilex pubescens (Aquifoliaceae) by flow cytometry and genome survey sequencing[J/OL]. BMC Genomics, 2023, 24(1): 270[2024-12-16]. DOI: 10.1186/s12864-023-09359-5. |
| [23] | KONG B L, NONG Wenyan, WONG K H, et al. Chromosomal level genome of Ilex asprella and insight into antiviral triterpenoid pathway[J/OL]. Genomics, 2022, 114(3): 110366[2024-12-16]. DOI: 10.1016/j.ygeno.2022.110366. |
| [24] | GEUKENS E, HAEGEMAN A, van MEULDER J, et al. Exploring genetic diversity in an Ilex crenata breeding germplasm[J/OL]. Horticulturae, 2023, 9(4): 485[2024-12-16]. DOI: 10.3390/horticulturae9040485. |
| [25] | 段一凡, 李岚, 杨欣欣, 等. 桂花及其近缘种倍性和基因组大小分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 47−52. DUAN Yifan, LI Lan, YANG Xinxin, et al. Study on ploidy and genome sizes of Osmanthus fragrans and its related species [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 47−52. |
| [26] | XU Kewang, WEI Xuefen, LIN Chenxue, et al. The chromosome-level holly (Ilex latifolia) genome reveals key enzymes in triterpenoid saponin biosynthesis and fruit color change[J/OL]. Frontiers in Plant Science, 2022, 13: 982323[2024-12-16]. DOI: 10.3389/fpls.2022.982323. |
| [27] | GOTTLIEB A M, POGGIO L. Quantitative and qualitative genomic characterization of cultivated Ilex L. species [J]. Plant Genetic Resources, 2015, 13(2): 142−152. |
| [28] | FENG Landi, YAO Yingjun, KANG Minghui, et al. Integrated genomic, transcriptomic, and metabolomic analyses of Ilex hylonoma provide insights into the triterpenoid saponin biosynthesis [J]. The Plant Journal, 2024, 120(3): 1176−1189. |
| [29] | XU Zhenxiu, WEI Haikun, LI Mingyue, et al. Impact of chromosomal fusion and transposable elements on the genomic evolution and genetic diversity of Ilex species[J/OL]. Plants, 2024, 13(18): 2649[2024-12-16]. DOI: 10.3390/plants13182649. |
| [30] | 江转转, 陈红, 鲍红艳, 等. 狼尾草属叶绿体基因组特征与分子标记开发[J]. 浙江农林大学学报, 2025, 42(2): 365−372. JIANG Zhuanzhuan, CHEN Hong, BAO Hongyan, et al. Chloroplast genome characteristics and molecular marker development of Pennisetum [J]. Journal of Zhejiang A&F University, 2025, 42(2): 365−372. |
| [31] | DANIELL H, LIN C S, YU Ming, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering[J/OL]. Genome Biology, 2016, 17(1): 134[2024-12-16]. DOI: 10.1186/s13059-016-1004-2. |
| [32] | ZHOU Ting, NING Kun, MO Zhenghai, et al. Complete chloroplast genome of Ilex dabieshanensis: genome structure, comparative analyses with three traditional Ilex tea species, and its phylogenetic relationships within the family Aquifoliaceae[J/OL]. PLoS One, 2022, 17(5): e0268679[2024-12-16]. DOI: 10.1371/journal.pone.0268679. |
| [33] | CHEN Yan, CHEN Huaxu, LI Haili, et al. Complete plastome sequence of Ilex asprella (Hooker and Arnott) Champion ex Bentham (Aquifoliaceae), a Chinese folk herbal medicine [J]. Mitochondrial DNA Part B, 2019, 4(2): 2341−2342. |
| [34] | KONG B L, PARK H S, LAU T D, et al. Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes[J/OL]. Scientific Reports, 2021, 11(1): 5153[2024-12-16]. DOI: 10.1038/s41598-021-84705-9. |
| [35] | YAO Xin, TAN Yunhong, LIU Yingying, et al. Chloroplast genome structure in Ilex (Aquifoliaceae)[J/OL]. Scientific Reports, 2016, 6: 28559[2024-12-16]. DOI: 10.1038/srep28559. |
| [36] | PARK J, KIM Y, NAM S, et al. The complete chloroplast genome of horned holly, Ilex cornuta Lindl. & Paxton (Aquifoliaceae) [J]. Mitochondrial DNA Part B, 2019, 4(1): 1275−1276. |
| [37] | XU Kewang, LIN Chenxue, LEE S Y, et al. Comparative analysis of complete Ilex (Aquifoliaceae) chloroplast genomes: insights into evolutionary dynamics and phylogenetic relationships[J/OL]. BMC Genomics, 2022, 23(1): 203[2024-12-16]. DOI: 10.1186/s12864-022-08397-9. |
| [38] | 翟旭阳, 王森, 郑轶, 等. 4种苹果属植物线粒体基因组的组装与比较分析[J]. 北京农学院学报, 2023, 38(3): 28−33. ZHAI Xuyang, WANG Sen, ZHENG Yi, et al. Assembly and comparative analysis of four mitochondrial genomes of Malus [J]. Journal of Beijing University of Agriculture, 2023, 38(3): 28−33. |
| [39] | XU Zhiqiang, HAO Yifei, XU Yue. Characterization of the complete mitochondrial genome of Ilex pubescens [J]. Mitochondrial DNA Part B, 2019, 4(1): 2003−2004. |
| [40] | ZHOU Peng, ZHANG Qiang, LI Fei, et al. Assembly and comparative analysis of the complete mitochondrial genome of Ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution[J/OL]. BMC Plant Biology, 2023, 23(1): 393[2024-12-16]. DOI: 10.1186/s12870-023-04377-7. |
| [41] | WANG Yuxiao, SUN Ning, SHI Wenxi, et al. Assembly and comparative analysis of the complete mitochondrial genome of Ilex macrocarpa[J/OL]. Forests, 2023, 14(12): 2372[2024-12-16]. DOI: 10.3390/f14122372. |
| [42] | 陈晓敏, 李沂霖, 何炜诺, 等. 分子标记技术在山羊育种中的研究进展[J]. 中国草食动物科学, 2023, 43(6): 45−51. CHEN Xiaomin, LI Yilin, HE Weinuo, et al. Research progress of molecular marker technology in goat breeding [J]. China Herbivore Science, 2023, 43(6): 45−51. |
| [43] | 黄红宝, 何应会, 黄欣, 等. 铁冬青叶绿体全基因组及系统进化分析[J]. 农业研究与应用, 2022, 35(5): 7−14. HUANG Hongbao, HE Yinghui, HUANG Xin, et al. Chloroplast whole genome of Ilex rotunda and its phylogenetic analysis [J]. Agricultural Research and Application, 2022, 35(5): 7−14. |
| [44] | KIM Y, OH D R, KIM Y J, et al. Chloroplast microsatellite-based high-resolution melting analysis for authentication and discrimination of Ilex species[J/OL]. Forests, 2022, 13(10): 1718[2024-12-16]. DOI: 10.3390/f13101718. |
| [45] | MANEN J F, BARRIERA G, LOIZEAU P A, et al. The history of extant Ilex species (Aquifoliaceae): evidence of hybridization within a Miocene radiation [J]. Molecular Phylogenetics and Evolution, 2010, 57(3): 961−977. |
| [46] | CUÉNOUD P, del PERO MARTINEZ M A, LOIZEAU P A, et al. Molecular phylogeny and biogeography of the genus Ilex L. (Aquifoliaceae) [J]. Annals of Botany, 2000, 85(1): 111−122. |
| [47] | CASCALES J, BRACCO M, GARBEROGLIO M J, et al. Integral phylogenomic approach over Ilex L. species from southern south America[J/OL]. Life, 2017, 7(4): 47[2024-12-16]. DOI: 10.3390/life7040047. |
| [48] | ZHANG Guojin, MA Hong. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution [J]. Journal of Integrative Plant Biology, 2024, 66(3): 546−578. |
| [49] | MIETTINEN K, POLLIER J, BUYST D, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis[J/OL]. Nature Communications, 2017, 8: 14153[2024-12-16]. DOI: 10.1038/ncomms14153. |
| [50] | 王杰, 贺文闯, 向坤莉, 等. 基因组时代的植物系统发育研究进展[J]. 浙江农林大学学报, 2023, 40(1): 227−236. WANG Jie, HE Wenchuang, XIANG Kunli, et al. Advances in plant phylogeny in the genome era [J]. Journal of Zhejiang A&F University, 2023, 40(1): 227−236. |
| [51] | SHI Dongqing, WU Jun, TANG Haibao, et al. Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants [J]. Genome Research, 2019, 29(11): 1889−1899. |