[1] WAN Songze, FU Shenglei, ZHANG Chenlu, et al. Effects of understory removal and litter addition on leaf and twig decomposition in a subtropical Chinese fir plantation [J]. Land Degradation &Development, 2021, 32(17): 5004 − 5011.
[2] 岳新建, 叶功富, 高伟, 等. 海岸沙地主要森林的凋落物分解及生态化学计量特征[J]. 水土保持研究, 2021, 28(4): 77 − 83.

YUE Xinjian, YE Gongfu, GAO Wei, et al. Characteristics of litter decomposition and ecological stoichiometry of different forests on coastal sandy land in Fujian Province [J]. Research of Soil and Water Conservation, 2021, 28(4): 77 − 83.
[3]

SHEN Ying, TIAN Dashuan, HOU Jihua, et al. Forest soil acidification consistently reduces litter decomposition irrespective of nutrient availability and litter type [J]. Functional Ecology, 2021, 35(12): 2753 − 2762.
[4] 李汶倬, 高扬, 杨柳, 等. 东北地区落叶松新鲜针叶凋落物碳氮磷化学计量特征对环境变化的响应[J]. 生态学杂志, 2020, 39(9): 2832 − 2841.

LI Wenzhuo, GAO Yang, YANG Liu, et al. Carbon, nitrogen, and phosphorus stoichiometry of recently senesced larch leaves in response to environmental factors across an entire growing season [J]. Chinese Journal of Ecology, 2020, 39(9): 2832 − 2841.
[5] 杨关吕, 黎建强, 左嫚, 等. 滇中高原磨盘山云南松林凋落物输入动态及养分归还量研究[J]. 生态环境学报, 2019, 28(11): 2158 − 2164.

YANG Guanlü, LI Jianqiang, ZUO Man, et al. Litter production variation and nutrient return of Pinus yunnanensis forest in Mopan mountain in central Yunnan plateau [J]. Ecology and Environmental Sciences, 2019, 28(11): 2158 − 2164.
[6] 李非凡, 孙冰, 裴男才, 等. 粤北3种林分凋落叶-根系-土壤生态化学计量特征[J]. 浙江农林大学学报, 2020, 37(1): 18 − 26.

LI Feifan, SUN Bing, PEI Nancai, et al. Characteristics of litter-root-soil ecological stoichiometry of three forest stands in northern Guangdong [J]. Journal of Zhejiang A&F University, 2020, 37(1): 18 − 26.
[7]

CHAPIN Ⅲ F, SMATSON P A, MOONEY H A. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer, 2011: 183 − 228.
[8] 马文济, 赵延涛, 张晴晴, 等. 浙江天童常绿阔叶林不同演替阶段地表凋落物的C∶N∶P化学计量特征[J]. 植物生态学报, 2014, 38(8): 833 − 842.

MA Wenji, ZHAO Yantao, ZHANG Qingqing, et al. C∶N∶P toichiometry in forest floor litter of evergreen broad-leaved forests at different successional stages in Tiantong, Zhejiang, eastern China [J]. Chinese Journal of Plant Ecology, 2014, 38(8): 833 − 842.
[9]

NAVE L E, VANCE E D, SWANSTON C W, et al. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization [J]. Geoderma, 2009, 153(1/2): 231 − 240.
[10] 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11): 3300 − 3310.

WANG Xinyuan, ZHAO Xueyong, LI Yulin, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review [J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3300 − 3310.
[11]

CORNELISSEN J H C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types [J]. Journal of Ecology, 1996, 84(4): 573 − 582.
[12] 武亚楠, 喻理飞, 张丽敏, 等. 喀斯特高原区植被恢复过程中土壤碳特征及其影响因素[J]. 生态环境学报, 2020, 29(10): 1935 − 1942.

WU Yanan, YU Lifei, ZHANG Limin, et al. Characteristics and influencing factors of soil carbon poolduring vegetation restoration in karst plateau [J]. Ecology and Environmental Sciences, 2020, 29(10): 1935 − 1942.
[13] 胡忠良, 潘根兴, 李恋卿, 等. 贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性[J]. 生态学报, 2009, 29(8): 4187 − 4195.

HU Zhongliang, PAN Genxing, LI Lianqing, et al. Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in karst mountainous area of central Guizhou Province, China [J]. Acta Ecologica Sinica, 2009, 29(8): 4187 − 4195.
[14] 刘娜, 喻理飞, 赵庆, 等. 喀斯特高原石漠化区次生林叶片—枯落物—土壤连续体碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2020, 26(3): 681 − 688.

LIU Na, YU Lifei, ZHAO Qing, et al. C∶N∶P stoichiometry of leaf-litter-soil continuum in secondary forests of the rocky desert regions of the karst plateau [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(3): 681 − 688.
[15] 吴鹏, 崔迎春, 赵文君, 等. 喀斯特森林植被自然恢复过程中土壤化学计量特征[J]. 北京林业大学学报, 2019, 41(3): 80 − 92.

WU Peng, CUI Yingchun, ZHAO Wenjun, et al. Characteristics of soil stoichiometric in natural restoration process of Maolan karst forest vegetation, southwestern China [J]. Journal of Beijing Forestry University, 2019, 41(3): 80 − 92.
[16] 喻阳华, 李一彤, 王俊贤, 等. 贵州白云岩地区植物群落叶片-凋落物-土壤化学计量与碳氮同位素特征[J]. 生态学报, 2022, 42(8): 1 − 10.

YU Yanghua, LI Yitong, WANG Junxian, et al. Leaf-litter-soil stoichiometry and carbon and nitrogen isotopes of plant communities in dolomite district in Guizhou Province [J]. Acta Ecologica Sinica, 2022, 42(8): 1 − 10.
[17] 曾昭霞, 刘孝利, 王克林, 等. 桂西北喀斯特区原生林与次生林凋落物及养分归还特征比较[J]. 生态环境学报, 2010, 19(1): 146 − 151.

ZENG Zhaoxia, LIU Xiaoli, WANG Kelin, et al. Comparison of litterfall and nutrients return properties of primary and secondary forest ecosystems, the karst region of northwest Guangxi [J]. Ecology and Environmental Sciences, 2010, 19(1): 146 − 151.
[18] 卢晓强, 杨万霞, 丁访军, 等. 茂兰喀斯特地区原始林凋落物量动态与养分归还[J]. 生态与农村环境学报, 2014, 30(5): 614 − 619.

LU Xiaoqiang, YANG Wanxia, DING Fangjun, et al. Dynamics of litterfall and nutrient recycling in virgin forest in Maolan karst region [J]. Journal of Ecology and Rural Environment, 2014, 30(5): 614 − 619.
[19] 杨艳鲜, 冯光恒, 潘志贤, 等. 干热河谷罗望子人工林凋落物分解及养分释放[J]. 干旱区资源与环境, 2013, 27(1): 102 − 107.

YANG Yanxian, FENG Guangheng, PAN Zhixian, et al. Decomposition dynamics and nutrient release of litters of Tamarindus indica Linn. artificial forests in dry-hot valler, China [J]. Journal of Arid Land Resources and Environment, 2013, 27(1): 102 − 107.
[20]

BERG B. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration[M]. Berlin: Springer Verlag, 2005: 269 − 271.
[21] 马祥庆, 刘爱琴, 何智英. 杉木幼林生态系统凋落物及其分解作用研究[J]. 植物生态学报, 1997, 21(6): 77 − 83.

MA Xiangqing, LIU Aiqin, HE Zhiying. The litter and its decomposition in young Chinese fir plantation ecosystem [J]. Chinese Journal of Plant Ecology, 1997, 21(6): 77 − 83.
[22] 施昀希, 陈奇伯, 黎建强. 滇中高原森林凋落物不同分解阶段C、N、P的化学计量特征及种间差异[J]. 中南林业科技大学学报, 2020, 40(1): 114 − 122.

SHI Yunxi, CHEN Qibo, LI Jianqiang. C, N and P stoichiometry at different stages of litter decomposition and interspecies comparison in central Yunnan plateau [J]. Journal of Central South University of Forestry &Technology, 2020, 40(1): 114 − 122.
[23] 喻林华, 方晰, 项文化, 等. 亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J]. 林业科学, 2016, 52(10): 10 − 21.

YU Linhua, FANG Xi, XIANG Wenhua, et al. Stoichiometry of carbon, nitrogen, andphosphorus in litter and soil of four types of subtropical stand [J]. Scientia Silvae Sinicae, 2016, 52(10): 10 − 21.
[24] 龙健, 赵畅, 张明江, 等. 不同坡向凋落物分解对土壤微生物群落的影响[J]. 生态学报, 2019, 39(8): 2696 − 2704.

LONG Jian, ZHAO Chang, ZHANG Mingjiang, et al. Effect of litter decomposition on soil microbes on different slopes [J]. Acta Ecologica Sinica, 2019, 39(8): 2696 − 2704.
[25] 赵畅, 龙健, 李娟, 等. 茂兰喀斯特原生林不同坡向及分解层的凋落物现存量和养分特征[J]. 生态学杂志, 2018, 37(2): 295 − 303.

ZHAO Chang, LONG Jian, LI Juan, et al. Litter stock and nutrient characteristics of decomposing litter layers in Maolan karst primary forest in different slope directions [J]. Chinese Journal of Ecology, 2018, 37(2): 295 − 303.
[26]

SULKAVA P, HUHTA V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil [J]. Applied Soil Ecology, 2003, 22(3): 225 − 239.
[27] 王书丽, 黄立君, 袁希, 等. 氮添加和升温对杉木林凋落物分解及碳氮磷化学计量特征的影响[J]. 生态学杂志, 2020, 39(9): 2842 − 2850.

WANG Shuli, HUANG Lijun, YUAN Xi, et al. Effects of nitrogen addition and warming on litter decomposition and C, N and P stoichiometric characteristics of Chinese fir [J]. Chinese Journal of Ecology, 2020, 39(9): 2842 − 2850.
[28] 刘瑞龙, 杨万勤, 谭波, 等. 土壤动物对川西亚高山和高山森林凋落叶第1年不同分解时期N和P元素动态的影响[J]. 植物生态学报, 2013, 37(12): 1080 − 1090.

LIU Ruilong, YANG Wanqin, TAN Bo, et al. Effects of soil fauna on N and P dynamics at different stages during the first year of litter decomposition in subalpine and alpine forests of western Sichuan [J]. Chinese Journal of Plant Ecology, 2013, 37(12): 1080 − 1090.
[29] 谌贤, 刘洋, 邓静, 等. 川西亚高山森林凋落物不同分解阶段碳氮磷化学计量特征及种间差异[J]. 植物研究, 2017, 37(2): 216 − 226.

SHEN Xian, LIU Yang, DENG Jing, et al. C, N and P stoichiometry at different stages of litter decomposition insubalpine forest of western Sichuan Province and interspecies comparison [J]. Bulletin of Botanical Research, 2017, 37(2): 216 − 226.
[30] 张建利, 严令斌, 喻理飞, 等. 草海流域3种优势树种凋落物叶分解历程中的水文特征[J]. 水土保持研究, 2014, 21(6): 61 − 66.

ZHANG Jianli, YAN Lingbin, YU Lifei, et al. Research for leaf-litter hydrographic effect in the decomposition process of three dominant three species in the Caohai wetland watershed [J]. Research of Soil and Water Conservation, 2014, 21(6): 61 − 66.
[31]

CRAINE J M, MORROW C, FIERER N. Microbial nitrogen limitation increases decomposition [J]. Ecology, 2007, 88(8): 2105 − 2113.
[32]

YUAN Zhiyou, CHEN H Y H. Meta-analysis global trends in senesced-leaf nitrogen and phosphorus [J]. Global Ecology and Biogeography, 2009, 18(5): 532 − 542.
[33]

MCGRODDY M E, DAUFRESNE T, HEDIN L O. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios [J]. Ecology, 2004, 85(9): 2390 − 2401.
[34] 王晶苑, 王绍强, 李纫兰, 等. 中国4种森林类型主要优势植物的C∶N∶P化学计量学特征[J]. 植物生态学报, 2011, 35(6): 587 − 595.

WANG Jingyuan, WANG Shaoqiang, LI Renlan, et al. C∶N∶P stoichiometric characteristics of four forest types’ dominant tree species in China [J]. Chinese Journal of Plant Ecology, 2011, 35(6): 587 − 595.
[35]

VEEN G F, SUNDQVIST M K, WARDLE D A. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects [J]. Functional Ecology, 2015, 29(7): 981 − 991.
[36] 赵溪, 李君剑, 李洪建. 关帝山不同植被恢复类型对土壤碳、氮含量及微生物数量的影响[J]. 生态学杂志, 2010, 29(11): 2102 − 2110.

ZHAO Xi, LI Junjian, LI Hongjian. Effects of vegetation restoration type on soil carbon, nitrogen, and microbial quantity in Guandi Mountain [J]. Chinese Journal of Ecology, 2010, 29(11): 2102 − 2110.