[1] 徐春春, 纪龙, 陈中督, 等. 2020年我国水稻产业形势分析及2021年展望[J]. 中国稻米, 2021, 27(2): 1 − 4.

XU Chunchun, JI Long, CHEN Zhongdu, et al. Analysis of China’s rice industry in 2020 and the outlook for 2021 [J]. China Rice, 2021, 27(2): 1 − 4.
[2]

ZHANG Q C, SHAMSI I H, XU D T, et al. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure [J]. Appl Soil Ecol, 2012, 57: 1 − 8.
[3]

LI Zhaolei, ZENG Zhaoqi, SONG Zhaopeng, et al. Vital roles of soil microbes in driving terrestrial nitrogen immobilization [J]. Glob Change Biol, 2021, 27: 1848 − 1858.
[4]

SCHMIDT J E, KENT A D, BRISSON V L, et al. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling[J/OL]. Microbiome, 2019, 7: 146 [2021-08-10]. doi: 10.1186/s40168-019-0756-9.
[5] 徐洋, 杨帆, 张卫峰, 等. 2014—2016年我国种植业化肥施用状况及问题[J]. 植物营养与肥料学报, 2019, 25(1): 11 − 21.

XU Yang, YANG Fan, ZHANG Weifeng, et al. Status and problems of chemical fertilizer application in crop plantations of China from 2014 to 2016 [J]. J Plant Nutr Fert, 2019, 25(1): 11 − 21.
[6] 周晓阳, 徐明岗, 周世伟, 等. 长期施肥下我国南方典型农田土壤的酸化特征[J]. 植物营养与肥料学报, 2015, 21(6): 1615 − 1621.

ZHOU Xiaoyang, XU Minggang, ZHOU Shiwei, et al. Soil acidification characteristics in southern China’ s croplands under long-term fertilization [J]. J Plant Nutr Fert, 2015, 21(6): 1615 − 1621.
[7]

ZENG Jun, LIU Xuejun, SONG Ling, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition [J]. Soil Biol Biochem, 2016, 92: 41 − 49.
[8] 张福锁. 科学认识化肥的作用[J]. 中国农技推广, 2017, 33(1): 16 − 19.

ZHANG Fusuo. Scientific understanding of the role of chemical fertilizers [J]. China Agric Technol Ext, 2017, 33(1): 16 − 19.
[9] 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响[J]. 中国农业科学, 2018, 51(11): 2136 − 2142.

WEN Yanchen, ZHANG Yuedong, YUAN Liang, et al. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer [J]. Sci Agric Sin, 2018, 51(11): 2136 − 2142.
[10] 李文军, 彭保发, 杨奇勇. 长期施肥对洞庭湖双季稻区水稻土有机碳、氮积累及其活性的影响[J]. 中国农业科学, 2015, 48(3): 488 − 500.

LI Wenjun, PENG Baofa, YANG Qiyong. Effects of long-term fertilization on organic carbon and nitrogen accumulation and activity in a paddy soil in double cropping rice area in Dongting Lake of China [J]. Sci Agric Sin, 2015, 48(3): 488 − 500.
[11] 李小萌, 陈效民, 曲成闯, 等. 生物有机肥与减量配施化肥对连作黄瓜养分利用率及产量的影响[J]. 水土保持学报, 2020, 34(2): 309 − 317.

LI Xiaomeng, CHEN Xiaomin, QU Chengchuang, et al. Effects of bio-organic fertilizer combined with reduced fertilizer on nutrient utilization and yield of continuous cropping cucumber [J]. J Soil Water Conserv, 2020, 34(2): 309 − 317.
[12] 赵泽州, 王晓玲, 李鸿博, 等. 生物质炭基肥缓释性能及对土壤改良的研究进展[J]. 植物营养与肥料学报, 2021, 27(5): 886 − 897.

ZHAO Zezhou, WANG Xiaoling, LI Hongbo, et al. Slow-release property and soil remediation mechanism of biochar-based fertilizers [J]. J Plant Nutr Fert, 2021, 27(5): 886 − 897.
[13] 李春阳. 减氮条件下配施不同用量炭基肥对红壤稻田土壤性质的影响[D]. 南昌: 江西农业大学, 2020.

LI Chunyang. Effects of Different Amount of Biochar based Fertilizer on Soil Properties of Red Soil Paddy Field under Nitrogen Reduction Condition[D]. Nanchang: Jiangxi Agricultural University, 2020.
[14] 常栋, 马文辉, 张凯, 等. 生物炭基肥对植烟土壤微生物功能多样性的影响[J]. 中国烟草学报, 2018, 24(6): 58 − 66.

CHANG Dong, MA Wenhui, ZHANG Kai, et al. Effect of biochar fertilizer on microbial functional diversity in tobacco growing soil [J]. Acta Tab Sin, 2018, 24(6): 58 − 66.
[15] 潘全良, 宋涛, 陈坤, 等. 连续6年施用生物炭和炭基肥对棕壤生物活性的影响[J]. 华北农学报, 2016, 31(3): 225 − 232.

PAN Quanliang, SONG Tao, CHEN Kun, et al. Influences of 6-year application of biochar and biochar-based compound fertilizer on soil bioactivity on brown soil [J]. Acta Agric Boreali-Sin, 2016, 31(3): 225 − 232.
[16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

LU Rukun. Methods of Soil Agricultural Chemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[17]

FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays [J]. Appl Environ Microbiol, 2005, 71(7): 4117 − 4120.
[18]

MAY L A, SMILEY B, SCHMIDT M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage [J]. Can J Microbiol, 2001, 47(9): 829 − 841.
[19]

BANO N, RUFFIN S, RANSOM B, et al. Phylogenetic composition of arctic ocean archaeal assemblages and comparison with antarctic assemblages [J]. Appl Environ Microbiol, 2004, 70(2): 781 − 789.
[20] 吴涛, 冯歌林, 曾珍, 等. 生物质炭对盆栽黑麦草生长的影响及机理[J]. 土壤学报, 2017, 54(2): 525 − 534.

WU Tao, FRNG Gelin, ZENG Zhen, et al. Effect of biochar addition on ryegrass growth in a pot experiment and its mechanism [J]. Acta Pedol Sin, 2017, 54(2): 525 − 534.
[21] 吕真真, 吴向东, 侯红乾, 等. 有机–无机肥配施比例对双季稻田土壤质量的影响[J]. 植物营养与肥料学报, 2017, 23(4): 904 − 913.

LÜ Zhenzhen, WU Xiangdong, HOU Honggan, et al. Effect of different application ratios of chemical and organic fertilizers on soil quality in double cropping paddy fields [J]. J Plant Nutr Fert, 2017, 23(4): 904 − 913.
[22] 杨天昱. 生物炭基肥对水稻产量及稻田土壤肥力特性的影响[D]. 沈阳: 沈阳农业大学, 2020.

YANG Tianyu. Effects of Biochar-based Fertilizer on Rice Yield and Paddy Soil Fertility Characteristics [D]. Shenyang Agricultural University, 2020.
[23] 李昌娟, 杨文浩, 周碧青, 等. 生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响[J]. 土壤通报, 2021, 52(2): 387 − 397.

LI Changjuan, YANG Wenhao, ZHOU Biqing, et al. Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field [J]. Chin J Soil Sci, 2021, 52(2): 387 − 397.
[24] 石丽红, 李超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 2021, 32(3): 921 − 930.

SHI Lihong, LI Chao, TANG Haiming, et al. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double-cropping rice system of southern China [J]. Chin J Appl Ecol, 2021, 32(3): 921 − 930.
[25] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729.

BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedol Sin, 2020, 57(3): 721 − 729.
[26] 徐一兰, 唐海明, 肖小平, 等. 长期施肥对双季稻田土壤微生物学特性的影响[J]. 生态学报, 2016, 36(18): 5847 − 5855.

XU Yilan, TANG Haiming, XIAO Xiaoping, et al. Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy field [J]. Acta Ecol Sin, 2016, 36(18): 5847 − 5855.
[27]

SHANG Lirong, WAN Liqiang, ZHOU Xiaoxin, et al. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China [J/OL]. PLoS One, 2020, 15: e0240559[2021-09-20]. doi: 10.1371/journal.pone.0240559.eCollection 2020.
[28]

LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review [J]. Soil Biol Biochem, 2011, 43(9): 1812 − 1836.
[29]

GUO Kangying, ZHAO Yingzhi, LIU Yang, et al. Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil [J/OL]. Geoderma, 2020, 363: 114162[2021-09-11]. doi: 10.1016/j.geoderma.2019.114162.
[30] 陈坤, 徐晓楠, 彭靖, 等. 生物炭及炭基肥对土壤微生物群落结构的影响[J]. 中国农业科学, 2018, 51(10): 1920 − 1930.

CHEN Kun, XU Xiaonan, PENG Jing, et al. Effects of biochar and biochar-based fertilizer on soil microbial community structure [J]. Sci Agric Sin, 2018, 51(10): 1920 − 1930.
[31] 陈懿, 吴春, 李彩斌, 等. 炭基肥对植烟黄壤细菌、真菌群落结构和多样性的影响[J]. 微生物学报, 2020, 60(4): 653 − 666.

CHEN Yi, WU Chun, LI Caibin, et al. Effect of biochar-based fertilizer on bacterial and fungal community composition, diversity in tobacco-planting yellow soil [J]. Acta Microbiol Sin, 2020, 60(4): 653 − 666.
[32]

MIAO Fuhong, LI Yuan, CUI Song, et al. Soil extracellular enzyme activities under long-term fertilization management in the croplands of China: a meta-analysis [J]. Nutr Cycling in Agroecosyst, 2019, 114: 125 − 138.
[33]

BAILEY V L, FANSLER S J, SMITH J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biol Biochem, 2011, 43(2): 296 − 301.