[1] |
DIETZE M C, SALA A, CARBONE M S, et al. Nonstructural carbon in woody plants[J]. Annu Rev Plant Biol, 2014, 65(1):667-687. |
[2] |
ROUNIS V, SKARMOUTSOS K, TSANIKLIDIS G, et al. Seeded and parthenocarpic cherry tomato fruits exhibit similar sucrose, glucose, and fructose levels, despite dissimilarities in UGPase and SPS gene expression and enzyme activity[J]. J Plant Growth Regul, 2015, 34(1):47-56. |
[3] |
秦巧平, 张上隆, 陈俊伟, 等.温州蜜柑果实发育期间果糖激酶与糖积累的关系[J].植物生理与分子生物学学报, 2004, 30(4):435-440.
QIN Qiaoping, ZHANG Shanglong, CHEN Junwei, et al. The relationship of fructokinase and sugar accumulation during fruit development in satsuma mandarin[J]. J Plant Physiol Mol Biol, 2004, 30(4):435-440. |
[4] |
LU C A, LIN C C, LEE K W, et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice[J]. Plant Cell, 2007, 19(8):2484-2499. |
[5] |
ZHANG Yongqiang, HE Junxian. Sugar-induced plant growth is dependent on brassinosteroids[J]. Plant Sign Behav, 2015, 10(12):1-3. |
[6] |
MÜLLER J, AESCHBACHER R A, SPRENGER N, et al. Disaccharide-mediated regulation of sucrose:fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves[J]. Plant Physiol, 2000, 123(1):265-274. |
[7] |
WINGLER A, FRITZIUS T, WIEMKEN A, et al. Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3 and starch synthesis in Arabidopsis[J]. Plant Physiol, 2000, 124(1):105-114. |
[8] |
IORDACHESCU M, IMAI R. Trehalose biosynthesis in response to abiotic stresses[J]. J Integr Plant Biol, 2008, 50(10):1223-1229. |
[9] |
WINGLER A, DELATTE T L, O'HARA L E, et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability[J]. Plant Physiol, 2012, 158(3):1241-1251. |
[10] |
SCHLUEPMANN H, PELLNY T, van DIJKEN A, et al. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana[J]. Proc Nat Acad Sci, 2003, 100(11):6849-6854. |
[11] |
HENRY C, BLEDSOE S W, GRIFFITHS C A, et al. Differential role for trehalose metabolism in salt-stressed maize[J]. Plant Physiol, 2015, 169(2):1072-1089. |
[12] |
KARIM S, ARONSSON H, ERICSON H, et al. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose[J]. Plant Mol Biol, 2007, 64(4):371-386. |
[13] |
丁顺华, 李艳艳, 王宝山.外源海藻糖对小麦幼苗耐盐性的影响[J].西北植物学报, 2005, 25(3):513-518.
DING Shunhua, LI Yanyan, WANG Baoshan. Effect of exogenous trehalose on salt tolerance of wheat seedlings[J]. Acta Bot Boreal-Occident Sin, 2005, 25(3):513-518. |
[14] |
HALFORD N G, HEY S, JHURREEA D, et al. Metabolic signalling and carbon partitioning:role of Snf1-related (SnRK1) protein kinase[J]. J Exp Bot, 2003, 54(382):467-475. |
[15] |
BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M, et al. A central integrator of transcription networks in plant stress and energy signaling[J]. Nature, 2007, 448(7156):938-942. |
[16] |
PURCELL P C, SMITH A M, HALFORD N G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves[J]. Plant J, 1998, 14(2):195-202. |
[17] |
CHO Y H, HONG J W, KIM E C, et al. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development[J]. Plant Physiol, 2012, 158(4):1955-1964. |
[18] |
NUNES C, O'HARA L E, PRIMAVESI L F, et al. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation[J]. Plant Physiol, 2013, 162(3):1720-1732. |
[19] |
ZHANG Yuhua, PRIMAVESI L F, JHURREEA D, et al. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate[J]. Plant Physiol, 2009, 149(4):1860-1871. |
[20] |
PAUL M J, PRIMAVESI L F, JHURREEA D, et al. Trehalose metabolism and signaling[J]. Annu Rev Plant Biol, 2008, 59(1):417-41. |
[21] |
PAUL M J, JHURREEA D, ZHANG Y H, et al. Up regulation of biosynthetic processes associated with growth by trehalose 6-phosphate[J]. Plant Sign Behav, 2010, 5(4):386-392. |
[22] |
董丽娜. 毛毛竹秆茎高生长的发育解剖研究[D]. 南京: 南京林业大学, 2007.
DONG Lina. Studies on Developmental Anatomy of Elongated Growth about Bamboo Culms[D]. Nanijing:Nanjing Forestry University, 2007. |
[23] |
刘琳, 王玉魁, 王星星, 等.毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J].生态学报, 2013, 33(9):2703-2711.
LIU Lin, WANG Yukui, WANG Xingxing, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys pubescens stems during its rapid growth stage[J]. Acta Ecol Sin, 2013, 33(9):2703-2711. |
[24] |
袁佳丽, 温国胜, 张明如, 等.毛竹快速生长期的水势变化特征[J].浙江农林大学学报, 2015, 32(5):722-728.
YUAN Jiali, WEN Guosheng, ZHANG Mingru, et al. Water potential with Phyllostachys edulis in its fast-growth periods[J]. J Zhejiang A & F Univ, 2015, 32(5):722-728. |
[25] |
PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461. |
[26] |
CUI Kai, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. J Proteome Res, 2012, 11(4):2492-2507. |
[27] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△C method[J]. Methods, 2001, 25(4):402-408. |
[28] |
SHEEN J, ZHOU L, JANG J C. Sugars as signaling molecules[J]. Curr Opin Plant Biol, 1999, 2(5):410-418. |
[29] |
PAUL M J, PRIMAVESI L F, JHURREEA D, et al. Trehalose metabolism and signaling[J]. Annu Rev Plant Biol, 2008, 59(1):417-41. |
[30] |
丁菲, 庞磊, 李叶云, 等.茶树海藻糖-6-磷酸合成酶基N(CsTPS)的克隆及表达分析[J].农业生物技术学报, 2012, 20(11):1253-1261.
DING Fei, PANG Lei, LI Yeyun, et al. Cloning and expression analysis of trehalose-6-phosphate synthase gene (CsTPS) from tea plant (Camellia sinensis (L.) O. Kuntz)[J]. J Agric Biotechnol, 2012, 20(11):1253-1261. |
[31] |
LAWLOR D W, PAUL M J. Source/sink interactions underpin crop yield:the case for trehalose-6-phosphate/SnRK1 in improvement of wheat[J]. Front Plant Sci, 2014, 5(418):1-14. doi:10.3389/fpls.2014.00418. |
[32] |
GLINSKI M, WECKWERTH W. Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana:a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis[J]. Mol Cellul Prot, 2005, 4(10):1614-1625. |
[33] |
POKHILKO A, EBENHÖH O. Mathematical modelling of diurnal regulation of carbohydrate allocation by osmo-related processes in plants[J]. J Royal Soc Interface, 2015, 12(104):1-11. doi:10.1098/rsif.2014.1357. |
[34] |
GEIGENBERGER P. Regulation of starch biosynthesis in response to a fluctuating environment[J]. Plant Physioly, 2011, 155(4):1566-1577. |
[35] |
TSAI A Y, GAZZARRINI S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling:the emerging picture[J]. Front Plant Sci, 2014, 5(119):1-11. doi:10.3389/fpls.2014.00119. |