[1] TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: from community assembly to plant health [J]. Nature Reviews Microbiology, 2020, 18(11): 607 − 621.
[2] RAAIJMAKERS J M, PAULITZ T C, STEINBERG C, et al. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms [J]. Plant and Soil, 2008, 321(1/2): 341 − 361.
[3] DONG Wentao, ZHU Yayun, CHANG Huizhong, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation [J]. Nature, 2021, 589(7843): 586 − 590.
[4] LIU Yin, HU Wen, HUANG Qing, et al. Plastic mulch debris in rhizosphere: interactions with soil-microbe-plant systems[J/OL]. The Science of the Total Environment, 2022, 807: 151435[2023-02-01]. doi: 10.1016/j.scitotenv.2021.151435.
[5] de SOUSA L P, GUERREIRO-FILHO O, MONDEGO J M C. The rhizosphere microbiomes of five species of coffee trees [J/OL]. Microbiology Spectrum, 2022, 10(2): e0044422[2023-02-01]. doi: 10.1128/spectrum.00444-22.
[6] WANG Liyang, RENGEL Z, ZHANG Kai, et al. Ensuring future food security and resource sustainability: insights into the rhizosphere [J/OL]. iScience, 2022, 25(4): 104168[2023-02-01]. doi: 10.1016/j.isci.2022.104168.
[7] 吴传云, 王超, 冯健, 等. 我国油料作物产业发展现状与机械化生产对策建议[J]. 农机科技推广, 2021(3): 18 − 19, 26.

WU Chuanyun, WANG Chao, FENG Jian, et al. The current development status of China’s oil crop industry and suggestions for mechanized production [J]. Agriculture Machinery Technology, 2021(3): 18 − 19, 26.
[8] 罗屹. 中国油料作物收获和储存损失测算及其资源环境影响评估[J]. 中国油料作物学报, 2022, 44(2): 249 − 256.

LUO Yi. On farm harvest and storage losses of oil crops and the impact on resources and environment in China [J]. Chinese Journal of Oil Crop Sciences, 2022, 44(2): 249 − 256.
[9] 徐晓侠. 我国农作物施肥存在的问题及对策[J]. 农业开发与装备, 2020(7): 72, 74.

XU Xiaoxia. Problems and countermeasures of crop fertilization in China [J]. Agricultural Development &Equipments, 2020(7): 72, 74.
[10]

JIMNEZ J A, NOVINSCAK A, FILION M. Pseudomonas fluorescens LBUM677 differentially increases plant biomass, total oil content and lipid composition in three oilseed crops [J]. Journal of Applied Microbiology, 2020, 128(4): 1119 − 1127.
[11]

SHWETA B, MAHESHWARI D K, DUBEY R C, et al. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L. ) [J]. Journal of Microbiology and Biotechnology, 2008, 18(9): 1578 − 1583.
[12]

AFZAL A, BANO A, FATIMA M. Higher soybean yield by inoculation with N-fixing and P-solubilizing bacteria [J]. Agronomy for Sustainable Development, 2010, 30(2): 487 − 495.
[13]

XU Yang, ZHANG Zhimeng, DING Hong, et al. Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut [J/OL]. Archives of Microbiology, 2021, 204(1): 15[2023-02-01]. doi: 10.1007/s00203-021-02619-6.
[14]

WANG Lin, LI Zhiying, LIU Ruirui, et al. Bacterial diversity in soybean rhizosphere soil at seedling and mature stages [J]. Polish Journal of Microbiology, 2019, 68(2): 281 − 284.
[15] 杜坤, 王婷, 杨阳, 等. 转mEPSPS基因甘蓝型油菜对根际土壤细菌群落结构和多样性的影响[J]. 中国油料作物学报, 2021, 43(1): 131 − 140.

DU Kun, WANG Ting, YANG Yang, et al. Effect of transgenic Brassica napus with mEPSPS gene on diversity and structure of rhizosphere microbial communities [J]. Chinese Journal of Oil Crop Sciences, 2021, 43(1): 131 − 140.
[16] 杜娟, 聂丽妍, 魏丽萍, 等. 西藏林芝市油菜根际细菌群落特征分析[J]. 高原农业, 2022, 6(1): 16 − 28.

DU Juan, NIE Liyan, WEI Liping, et al. Characterization of inter-root bacterial community of oilseed rape in Nyingchi, Tibet [J]. Journal of Plateau Agriculture, 2022, 6(1): 16 − 28.
[17] 汪瑞清, 肖运萍, 魏林根, 等. 油料作物连作障碍形成机理与生态修复措施研究进展[J]. 农学学报, 2015, 5(6): 29 − 33.

WANG Ruiqing, XIAO Yunping, WEI Lin’gen, et al. The research progress of formation mechanism and ecological restoration measures on continuous cropping obstacles of oil crops [J]. Journal of Agriculture, 2015, 5(6): 29 − 33.
[18] 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征[J]. 土壤学报, 2019, 56(4): 975 − 985.

YAO Xiaodong, LI Xiaogang, DING Changfeng, et al. Microzone distribution characteristics of soil microbial community with peanut cropping system, monocropping or rotation [J]. Acta Pedologica Sinica, 2019, 56(4): 975 − 985.
[19] 张豆豆, 梁新华, 王俊. 植物根系分泌物研究综述[J]. 中国农学通报, 2014, 30(35): 314 − 320.

ZHANG Doudou, LIANG Xinhua, WANG Jun. A review of plant root exudates [J]. Chinese Agricultural Science Bulletin, 2014, 30(35): 314 − 320.
[20]

DARRAH P R. Models of the rhizosphere [J]. Plant and Soil, 1991, 133: 187 − 199.
[21]

DONG Wei, SONG Yuguang. The significance of flavonoids in the process of biological nitrogen fixation [J/OL]. International Journal of Molecular Sciences, 2020, 21(16): 59265[2023-02-01]. doi: 10.3390/ijms21165926.
[22]

GOMEZ-ROLDAN V, FERMAS S, BREWER P B, et al. Strigolactone inhibition of shoot branching [J]. Nature, 2008, 455(7210): 189 − 194.
[23] 胡小加, 谢立华, 余常兵, 等. 巨大芽孢杆菌A6对油菜根系分泌物所含有机酸和糖类的趋化性[J]. 中国油料作物学报, 2011, 33(4): 416 − 419.

HU Xiaojia, XIE Lihua, YU Changbing et al. Chemotaxis of Bacillus megaterium strain A6 towards organic acid and saccharide from roots exudates of rapeseed [J]. Chinese Journal of Oil Crop Sciences, 2011, 33(4): 416 − 419.
[24] 韩丽梅, 鞠会艳, 王旭明. 大豆连作土壤有机化合物对大豆根腐病菌生长的影响[J]. 大豆科学, 2004(1): 36 − 40.

HAN Limei, JU Huiyan, WANG Xuming. Influence of the organic compounds in continuous cropping soybean on pathogenic of root rot [J]. Soybean Science, 2004(1): 36 − 40.
[25] 曲晓华, 赵晓燕, 马杰, 等. 大豆根系分泌物中特定物质对土壤微生物活性的影响[J]. 福建农业学报, 2015, 30(3): 298 − 302.

QU Xiaohua, ZHAO Xiaoyan, MA Jie, et al. Effect of soybean root exudates on microbial biomass and activity in soil [J]. Fujian Journal of Agricultural Sciences, 2015, 30(3): 298 − 302.
[26]

BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture [J]. World Journal of Microbiology &Biotechnology, 2012, 28(4): 1327 − 1350.
[27]

HE Chuynmei, GAO Hui, WANG Haijiao, et al. GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean [J]. Molecular Plant, 2021, 14(3): 488 − 502.
[28]

ZENG Qingwei, DING Xiaolei, WANG Jiangchuan, et al. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria [J]. Environmental Science and Pollution Research International, 2022, 29(30): 45089 − 45106.
[29]

BARGAZ A, ELHAISSOUFI W, KHOURCHI S, et al. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus [J/OL]. Microbiological Research, 2021, 252, 126842[2023-02-01]. doi: 10.1016/j.micres.2021.126842.
[30] 贺立虎, 李娟丽. 解磷菌对油菜品质及土壤理化性质的影响[J]. 陕西农业科学, 2018, 64(8): 47 − 50.

HE Lihu, LI Juanli. Effects of phosphate solubilizing bacteria on rape quality and soil physicochemical properties [J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(8): 47 − 50.
[31]

FLORES-F LIX J D, SILVA L R, RIVERA L P, et al. Plants probiotics as a tool to produce highly functional fruits: the case of phyllo bacterium and vitamin C in strawberries [J/OL]. PLoS One, 2015, 10(4): e0122281[2023-02-03]. doi: 10.1371/journal.pone.0122281.
[32] 王平, 李慧, 邱译萱, 等. 荧光假单胞菌株P13分泌铁载体抑制油菜菌核病菌[J]. 上海师范大学学报(自然科学版), 2010, 39(2): 200 − 203.

WANG Ping, LI Hui, QIU Yixuan, et al. Siderophores produced by Pseudomonas fluorescens P13 against Sclerotinia sclerotiorum [J]. Journal of Shanghai Normal University (Natural Sciences), 2010, 39(2): 200 − 203.
[33]

JÜRGEN K H L, KOLNAAR R, RAVENSBERG W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy [J/OL]. Frontiers in Plant Science, 2019, 10: 845[2023-02-03]. doi: 10.3389/fpls.2019.00845.
[34]

PIRTTIL A M , TABAS H M P , BARUAH N, et al. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits [J/OL]. Microorganisms, 2021, 9(4): 871[2023-02-01]. doi: 10.3390/microorganisms9040817.
[35]

MARTINEZ C, AVIS T J, SIMARD J N, et al. The role of antibiosis in the antagonism of different bacteria towards Helminthosporium solani, the causal agent of potato silver scurf [J]. Phytoprotection, 2006, 87(2): 69 − 75.
[36]

PARANI K, SAHA B K. Prospects of using phosphate solubilizing Pseudomonas as bio fertilizer [J/OL]. European Journal of Biological Sciences, 2012, 4(2): 63117[2023-02-01]. doi: 10.5829/idosi.ejbs.2012.4.2.63117.
[37]

MARK G, MORRISSEY J P, HIGGINS P, et al. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications [J]. FEMS Microbiology Ecology, 2006, 56(2): 167 − 177.
[38]

DAVE K, GOTHALWAL R, SINGH M, et al. Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean [J]. Archives of Microbiology, 2021, 203: 405 − 412.
[39]

LE N M, YARYURA P M, MONTECCHIA M S, et al. Antifungal activity of selected indigenous Pseudomonas and Bacillus from the soybean rhizosphere [J/OL]. International Journal of Microbiology, 2009: 572049[2023-02-01]. doi: 10.1155/2009/572049.
[40] 高小宁. 植物内生细菌菌株Em7对油菜菌核病的防治研究 [D]. 杨凌: 西北农林科技大学, 2012.

GAO Xiaoning. Study on the Biocontrol Efficacy of Endophytic Bacterium Em7 Isolate against Sclerotinia sclerotiorum on Oil Seed Rape[D]. Yangling: Northwest A&F University, 2012.
[41]

GU Shaohua, WEI Zhong, SHAO Zhengying, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes [J]. Nature Microbiology, 2020, 5(8): 1002 − 1010.
[42]

FAROOQ M, HUSSAIN M, USMAN M, et al. Impact of abiotic stresses on grain composition and quality in food legumes [J]. Journal of Agricultural and Food Chemistry, 2018, 66(34): 8887 − 8897.
[43]

VEJAN P, ABDULLAH R, KHADIRAN T, et al. Role of plant growth promoting Rhizobacteria in agricultural sustainability-a review [J/OL]. Molecules, 2016, 21(5): 573[2023-02-01]. doi:10.3390/molecules21050573.
[44]

KUMARI S, VAISHNAV A, JAIN S, et al. Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill) [J]. Journal of Plant Growth Regulation, 2015, 34(3): 558 − 573.
[45]

SUÁREZ R, WONG A, RAMIREZ M, et al. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia [J]. Molecular Plant-Microbe Interactions, 2008, 21(7): 958 − 966.
[46]

ABDELKRIM S, JEBARA S H, JEBARA M. Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting Rhizobacteria [J]. Ecotoxicology and Environmental Safety, 2018, 166: 427 − 436.
[47]

IGIEHON N O, BABALOLA O O. Below-ground-above-ground plant-microbial interactions: focusing on soybean, Rhizobacteria and mycorrhizal fungi [J]. Open Microbiology Journal, 2018, 12: 261 − 279.
[48]

TIMMUSK S, WAGNER E G. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses [J]. Molecular Plant-Microbe Interactions, 1999, 12(11): 951 − 959.
[49]

LU Tao, KE Mingjing, LAVOIE M, et al. Rhizosphere microorganisms can influence the timing of plant flowering [J/OL]. Microbiome, 2018, 6(1): 231[2023-02-01]. doi:10.1186/s40168-018-0615-0.
[50]

LI Huashan, LEI Peng, PANG Xiao, et al. Enhanced tolerance to salt stress in canola (Brassica napus L. ) seedlings inoculated with the halotolerant enterobacter cloacae HSNJ4 [J]. Applied Soil Ecology, 2017, 119: 26 − 34.
[51]

LIU Fang, XIA Yuping, WU Lei, et al. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis [J]. Gene, 2015, 557(2): 163 − 171.
[52]

BRUNE P D, CULLER A H, RIDLEY W P, et al. Safety of GM crops: compositional analysis [J]. Journal of Agricultural and Food Chemistry, 2013, 61(35): 8243 − 8247.
[53]

MAJEED A, ABBASI K, HAMEED S, et al. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input [J]. Microbiological Research, 2018, 216: 56 − 69.
[54]

GOUDA S, KERRY R G, DAS G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture [J]. Microbiological Research, 2018, 206: 131 − 140.
[55]

ZHANG Wei, ZHANG Bowen, DENG Jiefu, et al. The resistance of peanut to soil-borne pathogens improved by rhizosphere probiotics under calcium treatment [J/OL]. BMC Microbiology, 2021, 21(1): 299[2023-02-01]. doi: 10.1186/s12866-021-02355-3.
[56] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12 − 22.

YANG Zhen, DAI Chuanchao, WANG Xingxiang, et al. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases [J]. Acta Pedologica Sinica, 2019, 56(1): 12 − 22.
[57] 成瑢, 董铮, 李魏, 等. 大豆根腐病研究进展[J]. 中国农学通报, 2016, 32(8): 58 − 62.

CHENG Rong, DONG Zheng, LI Wei, et al. Research progress of soybean root rot [J]. Chinese Agricultural Science Bulletin, 2016, 32(8): 58 − 62.
[58]

WALLENHAMMAR A C, OMER Z S, EDIN E, et al. Influence of soil-borne inoculum of Plasmodiophora brassicae measured by qPCR on disease severity of clubroot-resistant cultivars of winter oilseed rape (Brassica napus L. ) [J/OL]. Pathogens, 2021, 10(4): 433[2023-02-01]. doi: 10.3390/pathogens10040433.
[59] 邢小萍, 袁虹霞, 孙炳剑, 等. 花生根部主要土传真菌病害的发生与防治[J]. 园艺与种苗, 2010, 30(6): 441 − 444.

XING Xiaoping, YUAN Hongxia, SONG Bingjian, et al. Occurrence regularity and control of main peanut root soil-born fungal disease [J]. Horticulture &Seed, 2010, 30(6): 441 − 444.
[60] 黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制[J]. 中国科学院院刊, 2017, 32(6): 593 − 600.

HUANG Xinqi, CAI Zucong. Soil microbes and control of soil-borne diseases [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 593 − 600.
[61] 高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6): 100 − 113.

GAO Youhui, ZHENG Zehui, ZHANG Yue, et al. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: a review [J]. Journal of China Agricultural University, 2021, 26(6): 100 − 113.
[62]

MAZZOLA M, FREILICH S. Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes [J]. Phytopathology, 2017, 107(3): 256 − 263.
[63]

SINGH C S. Arbuscular mycorrhiza (AM) in association with Rhizobium sp. improves nodulation, N2 fixation, and N utilization of pigeon pea (Cajanus cajan), as assessed with a N15 technique, in pots [J]. Microbiological Research, 1996, 151(1): 87 − 92.
[64]

PARKIN T B, GRAHAM J A. Effects of crop rotation on root-associated microbial communities of oilseed rape (Brassica napus) [J]. Applied and Environmental Microbiology, 1990, 56(2): 349 − 354.
[65] 刘鹏, 田颖哲, 钟永嘉, 等. 酸性土壤上花生高效根瘤菌的分离及应用[J]. 中国农业科学, 2019, 52(19): 3393 − 3403.

LIU Peng, TIAN Yingzhe, ZHONG Yongjia, et al. Isolation and application of effective rhizobium strains in peanut on acidic soils [J]. Scientia Agricultura Sinica, 2019, 52(19): 3393 − 3403.
[66]

SUGAWARA M, CYTRYN E J, SADOWSKY M J. Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation [J]. Appllied and Environmental Microbiology, 2010, 76(4): 1071 − 1081.
[67] 邹德勋, 徐凤花, 潘俊波, 等. 抗生菌剂在缓解大豆重迎茬根际微生态障碍中的作用[J]. 大豆科学, 2007, 26(2): 280 − 283.

ZOU Dexun, XU Fenghua, PAN Junbo, et al. Fuction of antimicrobial agent on delaying rhizosphere microbe obstacle of continuous and one year intermittent cropping soybean [J]. Soybean Science, 2007, 26(2): 280 − 283.
[68]

GÉVAUDANT F, DUBY G, von STEDINGK E, et al. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance [J]. Plant Physiology, 2007, 144(4): 1763 − 1776.
[69]

LUO Junyu, ZHANG Shuai, ZHU Xiangzhen, et al. Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields [J]. Journal of Integrative Agriculture, 2017, 16(7): 1624 − 1633.
[70]

KAHLON J G, JACOBSEN H J, CAHILL J F, et al. Antifungal genes expressed in transgenic pea (Pisum sativum L. ) do not affect root colonization of arbuscular mycorrhizae fungi [J]. Mycorrhiza, 2017, 27(7): 683 − 694.
[71]

BIDONDO L F, ALMASIA N, BAZZINI A, et al. The overexpression of antifungal genes enhances resistance to rhizoctonia solani in transgenic potato plants without affecting arbuscular mycorrhizal symbiosis [J/OL]. Crop Protection, 2019, 124: 104837[2023-02-01]. doi: 10.1016/j.cropro.2019.05.031.
[72]

van WYK D, ADELEKE R, RHODE O, et al. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in north west province of South Africa [J]. Journal of Basic Microbiology, 2017, 57(9): 781 − 792.
[73]

LUPWAYI N Z, ARSHAD M, RICE W A, et al. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management [J]. Applied Soil Ecology, 2001, 16(3): 251 − 261.
[74] 李春杰, 许艳丽, 陈海山, 等. 耕作方式对连作大豆生长发育及产量的影响[J]. 中国油料作物学报, 2008, 30(4): 455 − 459.

LI Chunjie, XU Yanli, CHEN Haishan, et al. Effects of tillage patterns on development and yield of continuous cropping soybean [J]. Chinese Journal of Oil Crop Sciences, 2008, 30(4): 455 − 459.
[75] 黄涛, 冯远娇, 王建武. 禾本科‖豆科间作对土壤微生物影响的研究进展[J]. 生态科学, 2022, 41(3): 229 − 236.

HUANG Tao, FENG Yuanjiao, WANG Jianwu. A review on the effects of cereal‖ legume intercropping on soil microorganisms [J]. Ecological Science, 2022, 41(3): 229 − 236.