[1] |
XIANG Ming, LIU Tingting, TAN Wanyue, et al. Effects of kinsenoside, a potential immunosuppressive drug for autoimmune hepatitis, on dendritic cells/CD8+ T cells communication in mice [J]. Hepatology, 2016, 64(6): 2135−2150. |
[2] |
TANG Tingting, DUAN Xiaoyu, KE Yu, et al. Antidiabetic activities of polysaccharides from Anoectochilus roxburghii and Anoectochilus formosanus in STZ-induced diabetic mice [J]. International Journal of Biological Macromolecules, 2018, 112: 882−888. |
[3] |
ZHOU Feng, MEI Jingtian, HAN Xiuguo, et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes [J]. Acta Pharmaceutica Sinica B, 2019, 9(5): 973−985. |
[4] |
XU Mengjie, SHAO Qingsong, YE Shenyi, et al. Simultaneous extraction and identification of phenolic compounds in Anoectochilus roxburghii using microwave-assisted extraction combined with UPLC-Q-TOF-MS/MS and their antioxidant activities[J/OL]. Frontiers in Plant Science, 2017, 8 : 1474[2024-06-10]. DOI: 10.3389/fpls.2017.01474. |
[5] |
杨晓灵. 金线莲多糖对酒精诱导小鼠肝损伤的保护作用及其颗粒冲剂的研制[D]. 福州: 福建医科大学, 2017.
YANG Xiaoling. The Protective Effect of ARPS on the Alcoholic Liver Injury Mice and ARPS Granule Prepared [D]. Fuzhou: Fujian Medical University, 2017. |
[6] |
MING Jiaxiong, XU Qianqian, GAO Limin, et al. Kinsenoside alleviates 17α-ethinylestradiol-induced cholestatic liver injury in rats by inhibiting inflammatory responses and regulating FXR-mediated bile acid homeostasis[J/OL]. Pharmaceuticals, 2021, 14 (5): 452[2024-06-10]. DOI: 10.3390/ph14050452. |
[7] |
TAO Yi, YANG Ying, ZHU Fei, et al. Serum metabolome profiling, network pharmacology analysis, and experimental validation of Anoectochilus roxburghii in the treatment of carbon tetrachloride-induced liver injury[J]. Biomedical Chromatography, 2023, 37 (10): e5706[2024-06-10]. DOI: 10.1002/bmc.5006. |
[8] |
陈玮, 吴仕明, 林恢, 等. 金线莲联合恩替卡韦治疗湿热型HBeAg阳性慢性乙型肝炎31例[J]. 福建中医药, 2020, 51 (4): 74−75.
CHEN Wei, WU Shiming, LIN Hui, et al. Anoectochilus roxburghii combined with entecavir in the treatment of 31 cases of damp-heat HBeAg positive chronic hepatitis B[J]. Fujian Journal of Traditional Chinese Medicine, 2020, 51 (4): 74−75. |
[9] |
刘婷婷. 金线莲苷靶向树突状细胞与CD8+T细胞的相互作用抗自身免疫性肝炎作用机制研究[D]. 武汉: 华中科技大学, 2017.
LIU Tingting. Effects of Kinsenoside, a Potential Immunosuppressive Drug for Autoimmune Hepatitis, on Dendritic Cells/CD8+T cells Communication [D]. Wuhan: Huazhong University of Science and Technology, 2017. |
[10] |
李叶, 祁克明, 卢伟, 等. 基于代谢组学和网络药理学分析福建金线莲叶和台湾银线兰叶治疗肝纤维化作用差异[J]. 中国现代应用药学, 2022, 39(23): 3092−3102.
LI Ye, QI Keming, LU Wei, et al. Exploring the difference in mechanism of action of Anoectochilus roxburghii leaves and Anoectochilus formosanus leaves in the treatment of liver fibrosis based on integrative metabolomics and network pharmacology [J]. Chinese Journal of Modern Applied Pharmacy, 2022, 39(23): 3092−3102. |
[11] |
宋薇. 新型PTP1B抑制剂金线莲苷衍生物的设计、合成和生物活性评价[D]. 济南: 山东大学, 2019.
SONG Wei. Design, Synthesis and Biological Activity Evaluation of Anoectoside Derivatives as a New PTP1B Inhibitor[D]. Jinan: Shandong University, 2019. |
[12] |
王建栋, 王红珍, 张爱莲, 等. 金线莲苷研究进展[J]. 中国医院药学杂志, 2015, 35(19): 1795−1798, 1802.
WANG Jiandong, WANG Hongzhen, ZHANG Ailian, et al. Recent advances in kinsenoside studies [J]. Chinese Journal of Hospital Pharmacy, 2015, 35(19): 1795−1798, 1802. |
[13] |
高立敏. 金线莲苷对酒精性脂肪肝和肝纤维化的保护作用及机制探索[D]. 武汉: 华中科技大学, 2022.
GAO Limin. Protective Effect and Mechanism of Anoectochilin on Alcoholic Fatty Liver and Liver Fibrosis[D]. Wuhan: Huazhong University of Science and Technology, 2022. |
[14] |
陈星宇. 金线莲苷减轻酒精联合四氯化碳所致肾损伤的作用及机制研究[D]. 武汉: 华中科技大学, 2021.
CHEN Xingyu. Effect and Mechanism of Kinesenoside on Renal Injury Induced by Alcohol Combined with Carbon Tetrachloride[D]. Wuhan: Huazhong University of Science and Technology, 2021. |
[15] |
安彦峰, 张雅琼, 冯德强. 金线莲药理和临床研究进展[J]. 中国现代中药, 2014, 16(8): 685−687.
AN Yanfeng, ZHANG Yaqiong, FENG Deqiang. Pharmacological effects and clinical use advances of Anoectochilus roxburghii [J]. Modern Chinese Medicine, 2014, 16(8): 685−687. |
[16] |
QIAO Nan, AN Zhaohong, FU Zeyu, et al. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke[J/OL]. European Journal of Pharmacology, 2023, 949 : 175717[2024-06-10]. DOI: 10.1016/j.ejphar.2023.175717. |
[17] |
ZHANG Feng, HAN Bei, LI Peng, et al. Design, synthesis and hepatoprotective activity of analogs of the natural product goodyeroside A [J]. Molecules, 2013, 18(2): 1933−1948. |
[18] |
朱建军, 黄雨佳, 金建红, 等. 不同栽培基质对金线莲3种基原植物生长及其活性成分含量的影响[J]. 中国中药杂志, 2019, 44(12): 2467−2471.
ZHU Jianjun, HUANG Yujia, JIN Jianhong, et al. Effect of cultivation substrate on growth and active component contents of Anoectochilus roburghii from three different origins [J]. China Journal of Chinese Materia Medica, 2019, 44(12): 2467−2471. |
[19] |
张超, 吴建国, 易骏, 等. HPLC-ELSD法测定三种植物基原金线莲的金线莲苷含量[J]. 食品工业科技, 2017, 38(2): 75−78.
ZHANG Chao, WU Jianguo, YI Jun, et al. Content determination of kinsenoside in Jin-Xian-Lian from three Anoectochilus species by HPLC-ELSD [J]. Science and Technology of Food Industry, 2017, 38(2): 75−78. |
[20] |
陈莹, 王文义, 谌赛男, 等. 不同品系及生长期金线莲的金线莲苷含量变化研究[J]. 中国现代中药, 2021, 23(8): 1423−1429.
CHEN Ying, WANG Wenyi, CHEN Sainan, et al. Changes in kinsenoside content of different strains of Anoectochilus roxburghii at different growth periods [J]. Modern Chinese Medicine, 2021, 23(8): 1423−1429. |
[21] |
张闻婷, 杨旻静, 梅瑜, 等. 金线莲苷的研究现状[J]. 天然产物研究与开发, 2024, 36(2): 348−356, 367.
ZHANG Wenting, YANG Minjing, MEI Yu, et al. Research status of kinsenoside [J]. Natural Product Research and Development, 2024, 36(2): 348−356, 367. |
[22] |
杨彬彬. 金线莲的水溶性化学成分及质量控制研究[D]. 福州: 福建中医药大学, 2018.
YANG Binbin. Studies on the Water-soluble Chemical Constituents and Quality Control of Anoectochilus roxburghii (Wall.) Lindl[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2018. |
[23] |
ZHANG Liping, YAN Peng, SHEN Chen, et al. Effects of exogenous TIBA on dwarfing, shoot branching and yield of tea plant (Camellia sinensis L. ) [J]. Scientia Horticulturae, 2017, 225: 676−680. |
[24] |
WANG Hongzhen, CHEN Xinying, YAN Xiaoyun, et al. Induction, proliferation, regeneration and kinsenoside and flavonoid content analysis of the Anoectochilus roxburghii (Wall. ) Lindl protocorm-like body[J]. Plants, 2022, 11 (19): 2465[2021-06-10]. DOI: 10.3390/plants11192465. |
[25] |
WEI Mi, CHEN Xuemin, YI Liwen, et al. Detecting kinsenoside from Anoectochilus roxburghii by HPLC-ELSD with dual columns of NH(2) and AQ-C(18) [J]. Phytochemical Analysis, 2020, 31(6): 700−710. |
[26] |
石瑶. 金线莲中Kinsenoside的代谢分布及生物合成初探[D]. 武汉: 华中科技大学, 2021.
SHI Yao. Metabolic Distribution and Preliminary Biosynthetic Research of Kinsenoside from Anoectochilus roxburghii[D]. Wuhan: Huazhong University of Science and Technology, 2021. |
[27] |
程琴, 谭秦亮, 李佳慧, 等. 不同宿根年限甘蔗品种内源激素及酶活性分析[J]. 作物杂志, 2022(3): 181−186.
CHENG Qin, TAN Qinliang, LI Jiahui, et al. Endogenous hormones and enzyme activity analysis in sugarcane varieties with different perennial root ages [J]. Crops, 2022(3): 181−186. |
[28] |
袁媛, 郑汉, 黄璐琦. 再论道地药材“优形、优质、优效” 特征成因及研究模式[J]. 中国中药杂志, 2024, 49(15): 3977−3985.
YUAN Yuan, ZHENG Han, HUANG Luqi. Review of contributing factors and research model of “excellent shape, high quality, and superior effect” of Dao-di herbs [J]. China Journal of Chinese Materia Medica, 2024, 49(15): 3977−3985. |
[29] |
王林, 朱金峰, 许自成. 烤烟打顶后喷施外源激素对中部烟叶品质的互作效应[J]. 核农学报, 2016, 30(12): 2411−2417.
WANG Lin, ZHU Jinfeng, XU Zicheng. Interactive effects of exogenous hormone on quality of middle leaves among flue-cured tobacco after the time of topping [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(12): 2411−2417. |
[30] |
于海涛, 霍俊伟, 吕其涛, 等. 植物激素对果实花青苷合成的影响[J]. 北方园艺, 2003(4): 56−57.
YU Haitao, HUO Junwei, LÜ Qitao, et al. Effects of plant hormones on anthocyanin synthesis in fruit [J]. Northern Horticulture, 2003(4): 56−57. |
[31] |
麦翠珊, 李方剑, 邓雅茹, 等. 高等植物糖信号转导研究进展[J]. 植物生理学报, 2023, 59(8): 1474−1488.
MAI Cuishan, LI Fangjian, DENG Yaru, et al. Recent advances in sugar signal transduction in higher plants [J]. Plant Physiology Journal, 2023, 59(8): 1474−1488. |