[1] 祁述雄. 中国桉树[M]. 北京: 中国林业出版社, 2002.

QI Shuxiong. Chinese Eucalypt [M]. Beijing: China Forestry Publishing House, 2002.
[2]

Montreal Process Implementation Group For Australia And National Forest Inventory Steering Committee. Australia’s State of the Forests Report 2018 [R]. Canberra: ABARES, 2018.
[3] 杨章旗. 广西桉树人工林引种发展历程与可持续发展研究[J]. 广西科学, 2019, 26(4): 355 − 361.

YANG Zhangqi. Development history and sustainable development of Eucalyptus plantations introduction in Guangxi [J]. Guangxi Sci, 2019, 26(4): 355 − 361.
[4] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58 − 64.

WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality vision [J]. Chin J Environ Sci Manage, 2020, 12(6): 58 − 64.
[5]

ZHANG Jinbiao, AN Min, WU Hanwen, et al. Chemistry and bioactivity of Eucalyptus essential oils [J]. Allelopathy J, 2010, 25(2): 313 − 330.
[6]

CHEN Xue, ZHANG Kaili, XIAO Lingping, et al. Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural [J/OL]. Biotechnol Biofuels, 2020, 13: 2[2021-10-10]. doi: 10.1186/s13068-019-1644-z.
[7]

JACOBS M R. Eucalypts for Planting [R]. Rome: Food and Agriculture Organization of the United Rome Italy, 1981.
[8]

PORTTS B M, DUNGEY H S. Intelspecific hebridization of Eucalyptus: key issues for breeders and geneticists [J]. New For, 2004, 27(2): 115 − 138.
[9] 王豁然. 桉树生物学概论[M]. 北京: 科学出版社, 2010.

WANG Huoran. A Chinese Appreciation of Eucalyptus [M]. Beijing: Science Press, 2010.
[10] 温远光, 周晓果, 喻素芳, 等. 全球桉树人工林发展面临的困境与对策[J]. 广西科学, 2018, 25(2): 107 − 116.

WEN Yuanguang, ZHOU Xiaoguo, YU Sufang, et al. The predicament and countermeasures of development of global Eucalyptus plantations [J]. Guangxi Sci, 2018, 25(2): 107 − 116.
[11] 中国林学会. 桉树科学发展问题调研报告[M]. 北京: 中国林业出版社, 2016.

Chinese Society of Forestry. Anshu Kexue Fazhan Wenti Diaoyan Baogao [M]. Beijing: China Forestry Publishing House, 2016.
[12]

REIS A A D, FRANKLIN S E, JÚNIOR F W A, et al. Classification of Eucalyptus plantation site index (SI) and mean annual increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil [J/OL]. Geocarto Int, 2020[2021-10-10]. doi: 10.1080/10106049.2020.1778103.
[13]

Brazilian Association of Forest Plantation Producers. Statistical Yearbook 2010 [R]. Brasília: ABRAF, 2010
[14]

FAO. Reports Submitted to the Regional Expert Consultation on Eucalyptus-Volume Ⅱ [R]. Bangkok: FAO Regional Office for Asia and the Pacific, 1996.
[15] 张樟德. 桉树人工林的发展与可持续经营[J]. 林业科学, 2008, 44(7): 97 − 102.

ZHANG Zhangde. A review on development situation and sustainable management of eucalypt plantation [J]. Sci Silv Sin, 2008, 44(7): 97 − 102.
[16] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学: 生命科学, 2021, 51(1): 1 − 11.

ZHU Yongguan, PENG Jingjing, WEI Zhong, et al. Linking the soil microbiome to soil health [J]. Sci Sin Vitae, 2021, 51(1): 1 − 11.
[17] 杨远彪, 吕成群, 黄宝灵, 等. 连栽桉树人工林土壤微生物和酶活性的分析[J]. 东北林业大学学报, 2008, 36(12): 10 − 12.

YANG Yuanbiao, LÜ Chengqun, HUANG Baoling, et al. Soil microbes and enzymes in Eucalyptus plantations under different rotations of continuously planting [J]. J Northeast For Univ, 2008, 36(12): 10 − 12.
[18]

O’BRIEN F J M, ALMARAZ M, FOSTER M A, et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the avon river critical zone observatory, Western Australia [J/OL]. Front Microbiol, 2019, 10: 1486[2021-10-10]. doi: 10.3389/fmicb.2019.01486.
[19]

ZHOU Xiaoqi, GUO Zhiying, CHEN Chengrong, et al. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations [J]. Biogeosciences, 2017, 14(8): 2101 − 2111.
[20]

SHEN Jupei, CHEN C R, LEWIS T. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest [J/OL]. Sci Rep, 2016, 6: 19639[2021-10-10]. doi: 10.1038/srep19639.
[21]

SHEN Jupei, ESFANDBOD M, WAKELIN S A, et al. Changes in bacterial community composition across natural grassland and pine forests in the Bunya Mountains in subtropical Australia [J]. Soil Res, 2019, 57(8): 825 − 834.
[22]

VARELA C, SUNDTROM J, CUIJVERS K, et al. Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii [J/OL]. Sci Rep, 2020, 10: 14716[2021-10-10]. doi: 10.1038/s41598-020-71663-x.
[23] 彭雯, 谭玲, 明安刚, 等. 南亚热带典型人工纯林土壤剖面细菌群落组成差异分析[J]. 土壤通报, 2018, 49(6): 1361 − 1369.

PENG Wen, TAN Ling, MING Angang, et al. Bacterial community composition in soil profile of typical monoculture plantations in south subtropical China [J]. Chin J Soil Sci, 2018, 49(6): 1361 − 1369.
[24]

QU Zhaole, LIU Bing, MA Yang, et al. Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees [J/OL]. Appl Soil Ecol, 2020, 149: 103515[2021-06-10]. doi: 10.1016/j.apsoil.2020.103515.
[25]

LI Jiayu, LIN Jiayi, PEI Chenyu, et al. Variation of soil bacterial communities along a chronosequence of Eucalyptus plantation [J/OL]. Peer J, 2018, 6: e5648[2021-6-10]. doi: 10.7717/peerj.5648.
[26]

de ARAUJO PEREIRA A P, de ANDRADE P A, BINI D, et al. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium [J/OL]. PLoS One, 2017, 12(7): e0180371[2021-6-10]. doi: 10.1371/journal.pone.0180371.
[27]

JIMENEZ-BUENO N G, VALENZUELA-ENCINAS C, MARSCH R, et al. Bacterial indicator taxa in soils under different long-term agricultural management [J]. J Appl Microbiol, 2016, 120(4): 921 − 933.
[28] 李超, 许宇星, 吴志华, 等. 不同施肥措施对桉树人工林土壤细菌群落结构及多样性的短期影响[J]. 桉树科技, 2020, 37(1): 10 − 17.

LI Chao, XU Yuxing, WU Zhihua, et al. Short-term effects of different Eucalyptus plantation fertilization treatments on soil bacterial community structure and diversity [J]. Eucalypt Sci Technol, 2020, 37(1): 10 − 17.
[29]

YAMADA T, SEKIGUCHI Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘Subphylum I’ with natural and biotechnological relevance [J]. Microbes Environ, 2009, 24(3): 205 − 216.
[30]

PODOSOKORSKAYA O A, BONCH-OSMOLOVSKAYA E A, NOVIKOV A A, et al. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae [J]. Int J Syst Evol Microbiol, 2013, 63(1): 86 − 92.
[31] 袁红朝, 吴昊, 葛体达, 等. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(6): 1807 − 1813.

YUAN Hongchao, WU Hao, GE Tida, et al. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils [J]. Chin J Appl Ecol, 2015, 26(6): 1807 − 1813.
[32]

PANKRATOV T A, KIRSANOVA L A, KAPARULLINA E N, et al. Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991 [J]. Int J Syst Evol Microbiol, 2012, 62(2): 430 − 437.
[33]

ISHAQ L, BARBER P A, HARDY G E S J, et al. Diversity of fungi associated with roots of Eucalyptus gomphocephala seedlings grown in soil from healthy and declining sites [J]. Aust Plant Path, 2018, 47: 155 − 162.
[34]

YOU Fang, LU Ping, HUANG Longbin. Characteristics of prokaryotic and fungal communities emerged in eco-engineered waste rock: Eucalyptus open woodlands at Ranger uranium mine [J/OL]. Sci Total Environ, 2022, 816: 151571[2021-6-10]. doi: 10.1016/j.scitotenv.2021.151571.
[35]

GATES G M, RATKOWSKY D A, GROVE S J. Aggregated retention and macrofungi: a case study from the Warra LTER site, Tasmania [J]. Tasforests, 2009, 18(11): 33 − 54.
[36]

CURLEVSKI N J A, XU Zhihong, ANDERSON I C, et al. Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities [J]. Soil Biol Biochem, 2010, 42(1): 14 − 20.
[37] 陈祖静, 高尚坤, 陈园, 等. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响[J]. 生态学报, 2020, 40(11): 3813 − 3821.

CHEN Zujing, GAO Shangkun, CHEN Yuan, et al. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest [J]. Acta Ecol Sin, 2020, 40(11): 3813 − 3821.
[38]

LIU Bin, QU Zhaolei , MA Yang, et al. Eucalyptus plantation age and species govern soil fungal community structure and function under a tropical monsoon climate in China [J/OL]. Front Fungal Biol, 2021, 2: 703467[2021-06-10]. doi: 10.3389/ffunb.2021.703467.
[39]

RACHID C T C C, BALIEIRO F C, FONSECA E S, et al. Intercropped silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations [J/OL]. PLoS One, 2015, 10(2): e0118515[2021-06-10]. doi: 10.1371/journal.pone.0118515.
[40]

JIMU L, KEMLER M, MUJURU L, et al. Illumina DNA metabarcoding of Eucalyptus plantation soil reveals the presence of mycorrhizal and pathogenic fungi [J]. Forestry, 2018, 91(2): 238 − 245.
[41]

SCHMIDT-DANNERT C. Biocatalytic portfolio of Basidiomycota [J]. Curr Opin Chem Biol, 2016, 31: 40 − 49.
[42] 李宽莹, 王泽林, 徐兴有, 等. 不同施肥处理对日光温室内土壤微生物数量与酶活性的影响[J]. 西北林学院学报, 2019, 34(2): 56 − 61.

LI Kuanying, WANG Zelin, XU Xingyou, et al. Effects of fertilization pattern on soil microorganism quantity and soil enzyme activity under the greenhouse grape-cultivating system [J]. J Northwest For Univ, 2019, 34(2): 56 − 61.
[43]

da SILVA G S, MELO C A D, FIALHO C M T, et al. Impact of sulfentrazone, isoxaflutole and oxyfluorfen on the microorganisms of two forest soils [J]. Bragantia, 2014, 73(3): 292 − 299.
[44] 谢志坚, 李海蓝, 徐昌旭, 等. 2种除草剂的土壤生态效应及其对后茬作物生长的影响[J]. 土壤学报, 2014, 51(4): 880 − 887.

XIE Zhijian, LI Hailan, XU Changxu, et al. Effects of two kinds of herbicides on paddy soil ecology and growth of succeeding crops [J]. Acta Pedol Sin, 2014, 51(4): 880 − 887.
[45]

ROY-BOLDUC A, LALIBERTÉ E, BOUDREAU S, et al. Strong linkage between plant and soil fungal communities along a successional coastal dune system [J/OL]. Fems Microbiol Ecol, 2016, 92(10): fiw156[2021-06-10]. doi: 10.1093/femsec/fiw156.
[46] 何伟, 吴福忠, 杨万勤, 等. 百草枯对巨桉人工幼林土壤细菌多样性的影响[J]. 环境科学学报, 2012, 32(11): 2857 − 2864.

HE Wei, WU Fuzhong, YANG Wanqin, et al. Effect of paraquat on soil bacteria diversity in a young eucalypt plantation [J]. Acta Sci Circumst, 2012, 32(11): 2857 − 2864.
[47] 苏少泉, 耿贺利. 百草枯特性与使用[J]. 农药, 2008, 47(4): 244 − 247.

SU Shaoquan, GENG Heli. The properties and application of paraquat [J]. Agrochemicals, 2008, 47(4): 244 − 247.
[48] 魏圣钊, 李林, 曹芹, 等. 巨桉连栽对土壤微生物生物量和数量的影响[J]. 热带亚热带植物学报, 2020, 28(1): 35 − 43.

WEI Shengzhao, LI Lin, CAO Qin, et al. Effect of continuous planting of Eucalyptus grandis on biomass and number of soil microbes [J]. J Trop Subtrop Bot, 2020, 28(1): 35 − 43.
[49]

ZHU Lingyue, WANG Xiuhai, CHEN Fangfang, et al. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity [J]. Land Degrad Dev, 2019, 30(6): 636 − 646.
[50] 黄振格, 何斌, 谢敏洋, 等. 连栽桉树人工林土壤氮素季节动态特征[J]. 东北林业大学学报, 2020, 48(9): 88 − 94.

HUANG Zhenge, HE Bin, XIE Minyang, et al. Seasonal dynamic characteristic of soil nitrogen in Eucalyptus plantations under successive rotation [J]. J Northeast For Univ, 2020, 48(9): 88 − 94.
[51]

ZAGATTO M R G, de ARAUJO PEREIRA A P, de SOUZA A J, et al. Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations [J]. For Ecol Manage, 2019, 433: 240 − 247.
[52]

RACHID C, BALIEIRO F C, PEIXOTO R S, et al. Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes [J]. Soil Biol Biochem, 2013, 66: 146 − 153.
[53]

KAMIMURA N, TAKAHASHI K, MORI K, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism [J]. Environ Microbiol Rep, 2017, 9(6): 679 − 705.
[54]

LI Shoutian, ZHOU Jianmin, WANG Huoyan, et al. Phenolic acids in plant-soil-microbe system: a review [J]. Pedosphere, 2002, 12(1): 1 − 14.
[55]

KOUTIKA L S, FIORE A, TABACCHIONI S, et al. Influence of Acacia mangium on soil fertility and bacterial community in Eucalyptus plantations in the Congolese Coastal Plains [J/OL]. Sustainability, 2020, 12(21): 8763[2021-06-10]. doi: 10.3390/su12218763.
[56]

PEREIRA A P A, DURRER A, GUMIERE T, et al. Mixed Eucalyptus plantations induce changes in microbial communities and increase biological functions in the soil and litter layers [J]. For Ecol Manage, 2019, 433: 332 − 342.
[57] 刘小香, 陈秋波, 王真辉, 等. 巨尾桉挥发油对真菌和昆虫的化感作用[J]. 生态学杂志, 2007, 26(6): 835 − 839.

LIU Xiaoxiang, CHEN Qiubo, WANG Zhenhui, et al. Allelopathic effects of essential oil from Eucalyptus grandis×E. urophylla on pathogenic fungi and pest insects [J]. Chin J Ecol, 2007, 26(6): 835 − 839.
[58]

SANTOS F M, de CARVALHO BALIEIRO F, FONTE M A, et al. Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium [J]. Plant Soil, 2018, 423: 141 − 155.
[59]

GERMON A, GUERRINI I A, BORDRON B, et al. Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m [J]. Plant Soil, 2018, 424: 203 − 220.
[60] 李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征[J]. 北京林业大学学报, 2020, 42(12): 51 − 62.

LI Wannian, HUANG Zeyue, ZHAO Chunmei, et al. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis [J]. J Beijing For Univ, 2020, 42(12): 51 − 62.
[61] 陈永康, 谭许脉, 李萌, 等. 珍贵固氮树种降香黄檀与二代巨尾桉混交种植对土壤微生物群落结构和功能的影响[J]. 广西植物, 2021, 41(9): 1476 − 1485.

CHEN Yongkang, TAN Xumai, LI Meng, et al. Effects of mixture of nitrogen-fixing tree species Dalbergia odorifera and second-generation Eucalyptus urophylla on structure and function of soil microbial community in subtropical China [J]. Guihaia, 2021, 41(9): 1476 − 1485.
[62] 黄雪蔓, 刘世荣, 尤业明. 固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响[J]. 林业科学研究, 2014, 27(5): 612 − 620.

HUANG Xueman, LIU Shirong, YOU Yeming. Effects of N-fixing tree species on soil microbial biomass and community structure of the second rotation Eucalyptus plantations [J]. For Res, 2014, 27(5): 612 − 620.
[63]

QIU Huen, GE Tida, LIU Jieyun, et al. Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling Analysis [J]. Eur J Soil Biol, 2018, 84: 27 − 34.
[64]

KABUYAH R N T M, van DONGEN B E, BEWSHER A D, et al. Decomposition of lignin in wheat straw in a sand-dune grassland [J]. Soil Biol Biochem, 2012, 45: 128 − 131.
[65]

CAO Yusong, FU Shenglei, ZOU Xiaoming, et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China [J]. Eur J Soil Biol, 2010, 46(2): 128 − 135.
[66]

MOHSIN F, SINGH R P, JATTAN S S, et al. Root studies in a Eucalyptus hybrid plantation at various ages [J]. Indian For, 2000, 126(11): 1165 − 1174.
[67]

GELDENHUYS C J. Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa [J]. For Ecol Manage, 1997, 99(1/2): 101 − 115.
[68] 张丹桔, 张健, 杨万勤, 等. 一个年龄序列巨桉人工林植物和土壤生物多样性[J]. 生态学报, 2013, 33(13): 3947 − 3962.

ZHANG Danju, ZHANG Jian, YANG Wanqin, et al. Plant’s and soil organism’s diversity across a range of Eucalyptus grandis plantation ages [J]. Acta Ecol Sin, 2013, 33(13): 3947 − 3962.
[69] 竹万宽, 许宇星, 王志超, 等. 不同生长阶段尾巨桉人工林土壤-微生物化学计量特征[J]. 浙江农林大学学报, 2021, 38(4): 692 − 702.

ZHU Wankuan, XU Yuxing, WANG Zhichao, et al. Soil-microbial stoichiometry of Eucalyptus urophylla×E. grandis plantation at different growth stages [J]. J Zhejiang A&F Univ, 2021, 38(4): 692 − 702.
[70]

XU Jie, LIU Bing, QU Zhaolei, et al. Age and species of Eucalyptus plantations affect soil microbial biomass and enzymatic activities [J/OL]. Microorganisms, 2020, 8(6): 811[2021-10-10]. doi: 10.3390/microorganisms8060811.
[71] 江瑶, 莫晓勇, 邓海燕, 等. 巨桉人工林外生菌根真菌群落组成及多样性[J]. 西北林学院学报, 2020, 35(6): 153 − 159.

JIANG Yao, MO Xiaoyong, DENG Haiyan, et al. Composition and diversity of ectomycorrhizal fungal community associated with Eucalyptus grandis plantation [J]. J Northwest For Univ, 2020, 35(6): 153 − 159.
[72]

BOUILLET J P, LACLAU J P, ARNAUD M, et al. Changes with age in the spatial distribution of roots of Eucalyptus clone in Congo: impact on water and nutrient uptake [J]. For Ecol Manage, 2002, 171(1/2): 43 − 57.
[73] 吴晓芙, 胡曰利. 刚果12号桉无性系人工林养分曲线[J]. 林业科学, 2002, 38(5): 24 − 30.

WU Xiaofu, HU Yueli. Nutrient curve of Eucalyptus ABL12 plantation [J]. Sci Silv Sin, 2002, 38(5): 24 − 30.
[74] 王艳, 胡小飞, 王方超, 等. 施氮磷肥对杉木人工林3种林下植物养分动态及化学计量比的影响[J]. 江西农业大学学报, 2016, 38(2): 304 − 311.

WANG Yan, HU Xiaofei, WANG Fangchao, et al. Effects of nitrogen and phosphorus fertilization on nutrient dynamics and stoichiometric ratios of three-understory plants in Chinese fir plantation [J]. Acta Agric Univ Jiangxi, 2016, 38(2): 304 − 311.
[75] 李佳雨, 林家怡, 裴晨羽, 等. 桉树种植对林地土壤丛枝菌根真菌群落结构及多样性的影响[J]. 生态学报, 2019, 39(8): 2723 − 2731.

LI Jiayu, LIN Jiayi, PEI Chenyu, et al. Diversity and structure of the soil arbuscular mycorrhizal fungal community are altered by Eucalyptus plantations [J]. Acta Ecol Sin, 2019, 39(8): 2723 − 2731.
[76]

SHENG Min, LALANDE R, HAMEL C, et al. Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of eastern Canada [J]. Plant Soil, 2013, 369(1): 599 − 613.
[77]

SPOHN M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms [J]. Basic Appl Ecol, 2016, 17(6): 471 − 478.
[78] 侯俊杰, 康丽华, 陆俊锟, 等. 芽孢杆菌对桉树幼苗的促生效果及其ACC脱氨酶活性的研究[J]. 微生物学通报, 2014, 41(10): 2029 − 2034.

HOU Junjie, KANG Lihua, LU Junkun, et al. Growth-promoting effect of Bacillus strains on Eucalyptus seedling and their ACC deaminase activity [J]. Microbiol China, 2014, 41(10): 2029 − 2034.
[79] 李永双, 范周周, 国辉, 等. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6): 854 − 862.

LI Yongshuang, FAN Zhouzhou, GUO Hui, et al. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution [J]. Carsol Sin, 2020, 39(6): 854 − 862.
[80]

SALEEM M, FETZER I, HARMS H, et al. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal [J/OL]. Proc Royal Soc B, 2016, 283(1825): 20152724[2021-10-10]. doi: 10.1098/rspb.2015.2724.
[81] 王艳红, 于镇华, 李彦生, 等. 植物-土壤-微生物间碳流对大气CO2浓度升高的响应[J]. 土壤与作物, 2018, 7(1): 22 − 30.

WANG Yanhong, YU Zhenhua, LI Yansheng, et al. Carbon flow in the plant-soil-microbe continuum in response to atmospheric elevated CO2 [J]. Soils Crops, 2018, 7(1): 22 − 30.
[82] 文晓萍, 黄宝灵, 吕成群, 等. 巨尾桉接种根瘤菌试验效果初探[J]. 西北林学院学报, 2008, 23(6): 118 − 121.

WEN Xiaoping, HUANG Baoling, LÜ Chengqun, et al. Research for the effect of rhizobia inoculation on the Eucalyptus grandis×E. urophylla [J]. J Northwest For Univ, 2008, 23(6): 118 − 121.
[83] 方丽英, 吴庆梅, 吕成群, 等. 土壤益生菌对盆栽马尾松苗生长的影响[J]. 四川林业科技, 2007, 28(5): 66 − 68.

FANG Liying, WU Qingmei, LÜ Chengqun, et al. Effect of soil probioticson the growth of potted masson’s pine seedlings [J]. J Sichuan For Sci Technol, 2007, 28(5): 66 − 68.
[84] 陈兰周, 刘永定, 宋立荣. 微鞘藻胞外多糖在沙漠土壤成土中的作用[J]. 水生生物学报, 2002, 26(2): 155 − 159.

CHEN Lanzhou, LIU Yongding, SONG Lirong. The function of exopolysaccharides of Microcoleus in the formation of desert soil [J]. Acta Hydrobiol Sin, 2002, 26(2): 155 − 159.
[85] 付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报, 2016, 36(2): 353 − 360.

FU Xiaofeng, ZHANG Guiping, ZHANG Xiaowei, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings [J]. Acta Bot Boreali-Occident Sin, 2016, 36(2): 353 − 360.
[86] 张辉, 黄宝灵, 吕成群, 等. 巨尾桉接种促生菌对根际土壤微生物及营养元素的影响[J]. 东北林业大学学报, 2013, 41(3): 69 − 72.

ZHANG Hui, HUANG Baoling, LÜ Chengqun, et al. Effects of Eucalyptus grandis×E. urophylla inoculated PGPR on soil rhizosphere microbe and nutrient [J]. J Northeast For Univ, 2013, 41(3): 69 − 72.
[87] 张海燕, 肖延华, 张旭东, 等. 土壤微生物量作为土壤肥力指标的探讨[J]. 土壤通报, 2006, 37(3): 422 − 425.

ZHANG Haiyan, XIAO Yanhua, ZHANG Xudong, et al. Microbial biomass as an indicator for evaluation of soil fertility properties [J]. Chin J Soil Sci, 2006, 37(3): 422 − 425.
[88] 黎云昆, 肖忠武. 我国林地土壤污染、退化、流失问题及对策[J]. 林业经济, 2015, 37(9): 3 − 15.

LI Yunkun, XIAO Zhongwu. China’s forestland soil pollution, degradation, erosion problems and countermeasures [J]. For Econ, 2015, 37(9): 3 − 15.
[89] 张婧, 杜阿朋. 桉树在土壤重金属污染区土壤生物修复的应用前景[J]. 桉树科技, 2010, 27(2): 43 − 47.

ZHANG Jing, DU Apeng. Application prospect of Eucalyptus in remedying the polluted soil by heavy metal [J]. Eucalypt Sci Technol, 2010, 27(2): 43 − 47.
[90] 黄佳玉, 谈宇, 廖妤婕, 等. 丛枝菌根真菌对桉树吸收Cu和Zn的作用研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 118 − 122.

HUANG Jiayu, TAN Yu, LIAO Yujie, et al. Effects of arbuscular mycorrhizal fungi on the uptake of copper and zinc by Eucalyptus [J]. J Guangxi Norm Univ Nat Sci Ed, 2013, 31(2): 118 − 122.
[91] 张旭红, 高艳玲, 林爱军, 等. 重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响[J]. 环境工程学报, 2008, 2(2): 274 − 278.

ZHANG Xuhong, GAO Yanling, LIN Aijun, et al. Effects of arbuscular mycorrhizal fungi colonization on toxicity of soil contaminated by heavy metals to Vicia faba [J]. Chin J Environ Eng, 2008, 2(2): 274 − 278.
[92] 廖妤婕, 谈宇, 付旺, 等. 丛枝菌根真菌作用下桉树对铅的耐受机制研究[J]. 基因组学与应用生物学, 2014, 33(3): 633 − 639.

LIAO Yujie, TAN Yu, FU Wang, et al. Study on the Pb-tolerance mechanism of Eucalyptus under the role of Arbuscular mycorrhizal fungi [J]. Genomics Appl Biol, 2014, 33(3): 633 − 639.
[93] 刘永鑫, 秦媛, 郭晓璇, 等. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845 − 862.

LIU Yongxin, QIN Yuan, GUO Xiaoxuan, et al. Methods and applications for microbiome data analysis [J]. Hereditas, 2019, 41(9): 845 − 862.
[94] 白洋, 钱景美, 周俭民, 等. 农作物微生物组: 跨越转化临界点的现代生物技术[J]. 中国科学院院刊, 2017, 32(3): 260 − 265.

BAI Yang, QIAN Jingmei, ZHOU Jianmin, et al. Crop microbiome: breakthrough technology for agriculture [J]. Bull Chin Acad Sci, 2017, 32(3): 260 − 265.