[1] 刘一星, 赵广杰.木质资源材料科学[M].北京:中国林业出版社, 2004:59-61, 107.
[2]

JARVIS M. Chemistry:cellulose stacks up[J]. Nature, 2003, 426(6967):611-612.
[3] 陈玉, 张怀强, 赵越, 等.天然结晶纤维素的生物合成及其去晶化途径[J].生物化学与生物物理进展, 2016, 43(8):747-757.

CHEN Yu, ZHANG Huaiqiang, ZHAO Yue, et al. Biosynthesis of natural crystal cellulose and its decrystallization[J]. Prog Biochem Biophys, 2016, 43(8):747-757.
[4] 安鑫.毛竹纤维细胞壁微纤丝取向与超微构造研究[D].北京: 中国林业科学研究院, 2016.

AN Xin. Microfibril Orientations and Ultrastructures of Fibers Wall from Moso Bamboo[D]. Beijing: Chinese Academy of Forestry, 2016.
[5] 廖声熙, 杨振寅, 崔凯, 等.翠柏木材管胞特性及结晶度的径向变异分析[J].南京林业大学学报(自然科学版), 2013, 37(1):87-90.

LIAO Shengxi, YANG Zhenyin, CUI Kai, et al. Radical variation of wood tracheid character and crystallinity of precious Calocedrus macrolepis[J]. J Nanjing For Univ Nat Sci Ed, 2013, 37(1):87-90.
[6] 曹琳, 赵广杰.毛白杨微纤丝角在株内的变异[J].北京林业大学学报, 2009, 31(增刊1):67-70.

CAO Lin, ZHAO Guangjie. Variation of microfibril angles within the tree of Populus tomentosa[J]. J Beijing For Univ, 2009, 31(suppl 1):67-70.
[7] 范文俊, 涂登云, 彭冲, 等.热处理对毛白杨木材力学性能的影响机理[J].东北林业大学学报, 2015, 43(10):88-91.

FAN Wenjun, TU Dengyun, PENG Chong, et al. Influence of heat treatment on mechanical properties of Populus tomentosa wood[J]. J Northeast For Univ, 2015, 43(10):88-91.
[8] 邵亚丽, 邢新婷, 余雁, 等.长白落叶松早材管胞纵向抗拉强度的研究[J].安徽农业大学学报, 2012, 39(1):67-71.

SHAO Yali, XING Xinting, YU Yan, et al. Research on longitudinal tensile strength of Larix olgensi earlywood tracheids[J]. J Anhui Agric Univ, 2012, 39(1):67-71.
[9]

LOERBROKS C, RINALDI R, THIEL W. The electronic nature of the 1, 4-β-glycosidic bond and its chemical environment:DFT insights into cellulose chemistry[J]. Chemistry, 2013, 19(48):16282-16294.
[10]

DING Shiyou, ZHAO Shuai, ZENG Yining. Size, shape, and arrangement of native cellulose fibrils in maize cell walls[J]. Cellulose, 2014, 21(2):863-871.
[11] 郭翰林.纤维素超分子结构及其降解过程的表征分析[D].济南: 山东大学, 2012.

GUO Hanlin. Characterization of Degradation Process of Cellulose Superstructure[D]. Jinan: Shandong University, 2012.
[12]

CIESIELSKI P N, MNTTHEWS J F, TUCKER M P, et al. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils[J]. ACS Nano, 2013, 7(9):8011-8019.
[13]

OKUDA K, TSEKOS L, Jr BROWN R M. Cellulose microfibril assembly in Erythrocladia subintegra Rosenv.:an ideal system for understanding the relationship between synthesizing complexes (TCs) and microfibril crystallization[J]. Protoplasma, 1994, 180(1/2):49-58.
[14]

LENEY L. A technique for measuring fibril angle using polarized light[J]. Wood Fiber, 1981, 13(1):13-16.
[15] 罗蓓, 杨守禄, 赵广杰.木材细胞壁纳米纤维分形构造径向和弦向变异规律[J].西南林业大学学报, 2011, 31(6):59-62.

LUO Bei, YANG Shoulu, ZHAO Guangjie. The variability of fractal ultra-structure of nano-fibrils in wood cell wall along radial and tangential direction[J]. J Southwest For Univ, 2011, 31(6):59-62.
[16] 陈红, 田根林, 吴智慧, 等. AFM技术观察慈竹纤维和薄壁细胞断面微纤丝聚集体特征[J].林业科学, 2016, 52(2):99-105.

CHEN Hong, TIAN Genlin, WU Zhihui, et al. Cellulose microfibril aggregates in cross-section of bamboo fiber and parenchyma cell wall with atomic force microscopy[J]. Sci Silv Sin, 2016, 52(2):99-105.
[17] 阮锡根, 尹思慈, 孙成志.应用X射线衍射(002)衍射弧法测定木材纤维次生壁的微纤丝角[J].林业科学, 1982, 18(1):64-69.

RUAN Xigen, YIN Sici, SUN Chengzhi. The microfibril angle measurement of the wood fiber secondary walls by X-ray diffraction, the methods of the (002) diffraction arc[J]. Sci Silv Sin, 1982, 18(1):64-69.
[18]

WANG Yurong, LEPPÄNEN K, ANDERSSOM S, et al. Studies on the nanostructure of the cell wall of bamboo using X-ray scattering[J]. Wood Sci Technol, 2012, 46(1-3):317-332.
[19]

WANG Xiaoqing, KEPLINGER T, GIERLINGER N, et al. Plant material features responsible for bamboo's excellent mechanical performance:a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels[J]. Ann Bot, 2014, 114(8):1627-1635.
[20]

SUN Lan, SINGH S, JOO M, et al. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy[J]. Biotechnol Bioeng, 2016, 113(1):82-91.
[21] 杨海艳, 郑志锋, 王堃, 等.原子力显微镜在纤维素研究中的应用[J].林产化学与工业, 2017, 37(1):14-20.

YANG Haiyan, ZHENG Zhifeng, WANG Kun, et al. Application of atomic force microscope in cellulosic investigation[J]. Chem Ind For Prod, 2017, 37(1):14-20.
[22] 李新宇, 张明辉.利用X射线衍射法探究木材含水率与结晶度的关系[J].东北林业大学学报, 2014, 42(2):96-99.

LI Xinyu, ZHANG Minghui. Relationship of wood moisture content and the degree of crystallinity by X-ray diffraction[J]. J Northeast For Univ, 2014, 42(2):96-99.
[23] 马晓娟, 黄六莲, 陈礼辉, 等.纤维素结晶度的测定方法[J].造纸科学与技术, 2012, 31(2):75-78.

MA Xiaojuan, HUANG Liulian, CHEN Lihui, et al. Determination methods for crystallinity of cellulose[J]. Paper Sci Technol, 2012, 31(2):75-78.
[24] 马建峰, 杨淑敏, 田根林, 等.拉曼光谱在天然纤维素结构研究中的应用进展[J].光谱学与光谱分析, 2016, 36(6):1734-1739.

MA Jianfeng, YANG Shumin, TIAN Genlin, et al. Study on the application of Raman spectroscopy to the research on natural cellulose structure[J]. Spectrosc Spectral Anal, 2016, 36(6):1734-1739.
[25]

BARNETT J R, BONHAM V A. Cellulose microfibril angle in the cell wall of wood fibers[J]. Biol Rev, 1999, 79(2):461-472.
[26]

SVEDSTRÖM K, LUCENIUS J, van den BULCKE J, et al. Hierarchical structure of juvenile hybrid aspen xylem revealed using X-ray scattering and microtomography[J]. Trees, 2012, 26(6):1793-1804.
[27]

BRENNAN M, McLEAN J P, ALTANER C M, et al. Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiate[J]. Cellulose, 2012, 19(4):1385-1404.
[28] 邓波, 杨万霞, 方升佐, 等.青钱柳幼龄期生长与木材性状表现及其性状相关分析[J].南京林业大学学报(自然科学版), 2014, 38(5):113-117.

DENG Bo, YANG Wanxia, FANG Shengzuo, et al. Growth and wood properties of juvenile Cyclocarya paliurus, and their correlation analysis[J]. J Nanjing For Univ Nat Sci Ed, 2014, 38(5):113-117.
[29] 刘一星, 吴玉章, 李坚.火炬松木材材性变异的规律[J].东北林业大学学报, 1999, 27(5):29-34.

LIU Yixing, WU Yuzhang, LI Jian. The variation pattern of wood properties of loblolly pine (Pinus taeda L.)[J]. J Northeast For Univ, 1999, 27(5):29-34.
[30]

DONALDSON L A. Variation in microfibril angle among three genetic group of Pinus radiata trees[J]. New Zealand J For Sci, 1993, 23(1):90-99.
[31] 徐晶, 黄大庄, 温静, 等.伐根嫁接毛白杨木材的解剖特性[J].东北林业大学学报, 2014, 42(8):82-85, 89.

XU Jing, HUANG Dazhuang, WEN Jing, et al. Anatomical properties of stump grafting Populus tomentosa[J]. J Northeast For Univ, 2014, 42(8):82-85, 89.
[32]

DING Tao, GU Lianbai, LI Tao. Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber[J]. Eur J Wood Wood Prod, 2011, 69(1):121-126.
[33] 崔凯, 孙庆丰, 廖声熙, 等.翠柏木材解剖性质和结晶度的径向变异及化学性质[J].东北林业大学学报, 2012, 40(4):49-54.

CUI Kai, SUN Qingfeng, LIAO Shengxi, et al. Wood anatomical properties of Calocedrus macrolepis and radial variation and chemical property of crystallinity[J]. J Northeast For Univ, 2012, 40(4):49-54.
[34] 李坚.木材波谱学[M].北京:科学出版社, 2003.
[35]

VIRTANEN T, SVEDSTRÖM K, ANDERSSON S, et al. A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing[J]. Cellulose, 2012, 19(1):219-235.
[36] 罗真付, 张雪峰, 潘彪, 等.人工林湿地松微纤丝角和结晶度的变异规律[J].安徽农业大学学报, 2012, 39(5):774-776.

LUO Zhenfu, ZHANG Xuefeng, PAN Biao, et al. Analysis of wood microfibril angle and crystallinity of Pinus elliottii plantation[J]. J Anhui Agric Univ, 2012, 39(5):774-776.
[37] 米沛, 徐斌, 潘新建.薄壳山核桃人工林木材的化学性质[J].东北林业大学学报, 2014, 42(6):79-82.

MI Pei, XU Bin, PAN Xinjian. Chemical properties of plantation wood in Carya illinoensis[J]. J Northeast For Univ, 2014, 42(6):79-82.
[38] 石江涛, 丁笑红, 张勰, 等.天然次生林杉木枝材与干材材性比较[J].林业工程学报, 2017, 2(1):20-24.

SHI Jiangtao, DING Xiaohong, ZHANG Xie, et al. Comparison of characteristics of branch and truck of Cunninghamia lanceolata from natural secondary forest[J]. J For Eng, 2017, 2(1):20-24.
[39] 石江涛, 李坚.东北常见树种木材形成早期组织波谱特征差异分析[J].林业科学, 2016, 52(6):115-121.

SHI Jiangtao, LI Jian. Comparative analysis of spectroscopy features of early-stage wood forming tissue in common tree species in northeast, China[J]. Sci Silv Sin, 2016, 52(6):115-121.
[40] 王秋玉, 曲丽娜, 贾洪柏.白桦天然种群木材纤维性状、微纤丝角和基本密度的变异[J].东北林业大学学报, 2007, 35(2):1-3, 6.

WANG Qiuyu, QU Lina, JIA Hongbai. Variation of wood fiber characteristics, microfibril angle and basic density of Betula platyphylla in natural populations[J]. J Northeast For Univ, 2007, 35(2):1-3, 6.
[41] 王丰, 潘彪, 蒋亚萍, 等.浙江桂幼龄材的生长特性及主要材性[J].林业科技开发, 2014, 28(5):75-79.

WANG Feng, PAN Biao, JIANG Yaping, et al. Growth characteristics and wood properties of juvenile wood of Cinnamomum chekiangense[J]. China For Sci Technol, 2014, 28(5):75-79.
[42] 郑学晶, 霍书浩.天然高分子材料[M].北京:化学工业出版社, 2010.
[43]

ANDERSSON S, WANG Yurong, PÖNNI R, et al. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.)[J]. J Integrative Plant Biol, 2015, 57(4):388-395.
[44]

PIRKKALAINEN K, PEURA M, LEPPÄNEN K, et al. Simultaneous X-ray diffraction and X-ray fluorescence microanalysis on secondary xylem of Norway spruce[J]. Wood Sci Technol, 2012, 46(6):1113-1125.
[45]

ANDERSSON S, WIKBERG H, PESONEN E, et al. Studies of crystallinity of Scots pine and Norway spruce cellulose[J]. Trees, 2004, 18(3):346-353.
[46] 尹江苹, 郭娟, 赵广杰, 等.湿热-压缩处理木材的纤维素晶体结构变化[J].林产工业, 2017, 44(7):10-14.

YIN Jiangping, GUO Juan, ZHAO Guangjie, et al. Cellulose crystalline structure changes of the wood treated by compression combined with steam[J]. China For Prod Ind, 2017, 44(7):10-14.
[47]

HIRABAWA Y, YAMASHITA K, NAKADA R et al. The effects of S2 microfibril angles of latewood tracheids and densities on modulus of elasticity variations of sugi tree (Cryptomeria japonica) logs[J]. Mokuzai Gakkaishi, 1997, 43(9):717-724.
[48] 胡进波, 刘元, 苌姗姗, 等.尾巨桉S2层微纤丝角及组织比量的径向变异[J].中南林业科技大学学报, 2008, 28(1):30-34.

HU Jinbo, LIU Yuan, CHANG Shanshan, et al. Radial variation of the micro-fibrillar angle and tissue proportion of Eucalyptus urophylla×Eucalyptus grandis families[J]. J Cent South Univ For Technol, 2008, 28(1):30-34.
[49] 陈存, 丁昌俊, 苏晓华, 等.欧美杨纤维含量构成因素的相关和通径分析[J].林业科学, 2016, 52(11):124-133.

CHEN Cun, DING Changjun, SU Xiaohua, et al. Correlation and path analysis of the components of fiber content for Populus×euramericana[J]. Sci Silv Sin, 2016, 52(11):124-133.