[1] TIAN Chaoguang, WAN Ping, SUN Shouhong, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Mol Biol, 2004, 54(4):519-532.
[2] LIU Baoling, SUN Yan, XUE Jinai, et al. Genome-wide characterization and expression analysis of GRAS gene family in pepper (Capsicum annuum L.)[J/OL]. Peer J, 2018, 6: e4796. https://peerj.com/preprints/3522.pdf.
[3] ZHOU Shengen, HU Zongli, LI Fenfeng, et al. Manipulation of plant architecture and flowering time by down-regulation of the GRAS transcription factor SlGRAS26 in Solanum lycopersicum[J]. Plant Sci, 2018, 271:81-93.
[4] SUN Xiaolin, JONES W T, RIKKEINK E H A. GRAS proteins:the versatile roles of intrinsically disordered proteins in plant signalling[J]. Biochem J, 2012, 442(1):1-12.
[5] SUN Xiaolin, XUE Bin, JONES W T, et al. A functionally required unfoldome from the plant kingdom:intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development[J]. Plant Mol Biol, 2011, 77(3):205-223.
[6] WANG Yu, SHI Shenglu, ZHOU Ying, et al. Genome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera)[J]. Peer J, 2016, 4:e2388. doi:10.7717/peerj.2388.
[7] ZHANG Lei, LI Qing, CHEN Junfeng, et al. Computational identification and systematic classification of novel GRAS genes in Isatis indigotica[J]. Chin J Nat Med, 2016, 14(3):161-176.
[8] BAI Zhenqing, XIA Pengguo, WANG Ruilin, et al. Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots[J]. PLoS One, 2017, 12(9):e0185322. doi:10.1371/journal.pone.0185322.
[9] DIÉDHIOU I, TROMAS A, CISSOKO M, et al. Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa[J]. BMC Plant Biol, 2014, 14:342. doi:10.1186/s12870-014-0342-z.
[10] XU Wei, CHEN Zexin, AHMED N, et al. Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in castor beans[J]. Int J Mol Sci, 2016, 17(7):e1004. doi:10.3390/ijms17071004.
[11] XUE Li, CUI Haitao, BUER B, et al. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus[J]. Plant Physiol, 2015, 167(3):854-871.
[12] RICH M K, COUR P E, ROURX C, et al. Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrid[J]. BMC Genomics, 2017, 18(1):589. doi:10.1186/s12864-017-3988-8.
[13] KOIZUMI K, HAYASHI T, WU S, et al. The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue[J]. Proc Natl Acad Sci USA, 2012, 109(32):13010-13015.
[14] SLEWINSKI T L, ANDERSON A A, ZHANG Cankui K, et al. Scarecrow plays a role in establishing Kranz anatomy in maize leaves[J]. Plant Cell Physiol, 2012, 53(12):2030-2037.
[15] KOIZUMI K, WU Shuang, MACRAE-CRERAR A, et al. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor[J]. Curr Biol, 2011, 21(18):1559-1564.
[16] HAN Mingyu, FAN Sheng, ZHANG Dong, et al. Identification, classification, and expression analysis of GRAS gene family in Malus domestica[J]. Front Physiol, 2017, 8:253. doi:10.3389/fphys.2017.00253.
[17] WANG Yinxin, LIU Zhiwei, WU Zhijun, et al. Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Sci Rep, 2018, 8(1):3949. doi:10.1038/s41598-018-22275-z.
[18] CZIKKEL B E, MAXWELL D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus[J]. J Plant Physiol, 2007, 164(9):1220-1230.
[19] YOON E K, DHAR S, LEE M H, et al. Conservation and diversification of the SHR-SCR-SCL23 regulatory network in the development of the functional endodermis in Arabidopsis shoots[J]. Mol Plant, 2016, 9(8):1197-1209.
[20] FENG Suhua, MARTINEZ C, GUSMAROLI G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451(7177):475-479.
[21] HOU Xingliang, LEE L Y, XIA Kuaifei, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Dev Cell, 2010, 19(6):884-894.
[22] LIU Sisi, CHEN Juan, LI Shuchao, et al. Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae)[J]. Int J Mol Sci, 2015, 16(12):30190-30203.
[23] YANG Na, ZHOU Wenping, SU Jiao, et al. Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza[J]. Front Plant Sci, 2017, 8:1804. doi:10.3389/fpls.2017.01804.
[24] ZHANG Zhonglin, OGAWA M, FLEET C M, et al. SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(5):2160-2165.
[25] HEO J O, ESTELLE M. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root[J]. Proc Natl Acad Sci USA, 2011, 108(5):2166-2171.
[26] GRIMPLET J, AGUDELO-ROMERO P, TEIXEIRA R T, et al. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses[J]. Front Plant Sci, 2016, 7:353. doi:10.3389/fpls.2016.00353.
[27] YANG Minggui, YANG Qingyong, FU Tingdong, et al. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J]. Plant Cell Rep, 2011, 30(3):373-388.
[28] ENGSTROM E M, ANDERSEN C M, GUMULAK-SMITH J, et al. Arabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy[J]. Plant Physiol, 2011, 155(6):735-750.
[29] GAO Mingjun, PARKIN I, LYDIATE D, et al. An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase[J]. Plant Mol Biol, 2004, 55(3):417-431.
[30] ZHANG Bin, LIU J, YANG Zhaoe, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L.[J]. BMC Genomics, 2018, 19(1):348. doi:10.1186/s12864-018-4722-x.
[31] FAMBRINI M, MARIOTTI L, PARLANTI S, et al. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants[J]. Plant Biol, 2015, 17(6):1123-1134.
[32] 周波, 李玉花.植物的光敏色素与光信号转导[J].植物生理学报, 2006, 42(1):134-140.

ZHOU Bo, LI Yuhua. Phytochrome and light signal transduction in plants[J]. Plant Physiol J, 2006, 42(1):134-140.
[33]

LEE M H, KIM B, SONG S K, et al. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana[J]. Plant Mol Biol, 2008, 67(6):659-670.
[34]

BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction[J]. Gene Dev, 2000, 14(10):1269-1278.
[35]

TORRES-GALEA P, HIRTREITER B, BOLLEC C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction[J]. Plant Physiol, 2013, 161(1):291-304.
[36]

TORRES-GALEA P, HUANG Lifang, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Mol Genet Genomics, 2006, 276(1):13-30.
[37]

DAY R B, TANABE S, KOSHIOKA M, et al. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins:evidence for cross-talk between elicitor and gibberellin signaling in rice cells[J]. Plant Mol Biol, 2004, 54(2):261-272.
[38] 郑洁, 王磊.油菜素内酯在植物生长发育中的作用机制研究进展[J].中国农业科技导报, 2014, 16(1):52-58.

ZHENG Jie, WANG Lei. Advance in mechanism of brassinosteroid in plant development[J]. J Agric Sci Technol China, 2014, 16(1):52-58.
[39]

XIAO Yunhua, LIU Dapu, ZHANG Guoxia, et al. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice[J]. Front Plant Sci, 2017, 8:1698. doi:10.3389/fpls.2017.01698.