[1] 杨艳芬, 王兵, 王国梁, 等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389 − 7397.

YANG Yanfen, WANG Bing, WANG Guoliang, et al. Ecological regionalization and overview of the Loess Plateau [J]. Acta Ecol Sin, 2019, 39(20): 7389 − 7397.
[2] 中华人民共和国水利部. 第1次全国水利普查水土保持情况公报[R/OL]. (2013-11-21)[2021-04-06]. http://www.mwr.gov.cn/zw/slbgb/201612/t20161222_775434.html.
[3] 马荣亮, 朱立军, 杨晓珍, 等. 茹河流域水土保持工程隔坡梯田应用研究[J]. 水土保持通报, 2008, 28(6): 135 − 137.

MA Rongliang, ZHU Lijun, YANG Xiaozhen, et al. Study of the bench terrace as soil and water conservation engineering in Ruhe watershed [J]. Bull Soil Water Conserv, 2008, 28(6): 135 − 137.
[4] 胡望舒, 洪辉, 周侃, 等. 黄土丘陵区水平梯田与农民收入的关系及原因: 以宁夏回族自治区固原市为例[J]. 干旱区地理, 2013, 36(3): 536 − 544.

HU Wangshu, HONG Hui, ZHOU Kan, et al. Relationship of level terrace and farmers’ income and its causes in loess hilly region: a case study in Guyuan [J]. Arid Land Geogr, 2013, 36(3): 536 − 544.
[5]

FENG Xiaoming, FU Bojie, LU Nan, et al. How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’s Loess Plateau [J]. Sci Rep, 2013, 3(1): 2846 − 2850.
[6] 余峰, 李月祥. 宁夏退耕还林工程研究[M]. 银川: 阳光出版社, 2012: 6 − 13.
[7] 党恬敏, 穆兴民, 孙文义, 等. 高分辨率遥感影像梯田快速提取方法研究进展[J]. 人民黄河, 2017, 39(3): 85 − 89, 94.

DANG Tianmin, MU Xingmin, SUN Wenyi, et al. Review of quickly discriminating approaches of terrace information based on high resolution remote sensing images [J]. Yellow River, 2017, 39(3): 85 − 89, 94.
[8]

XIONG Jun, THENKABAIL P S, TILTON J C, et al. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine [J]. Remote Sensing, 2017, 9(10): 1065 − 1091.
[9] 刘凯, 彭力恒, 李想, 等. 基于Google Earth Engine的红树林年际变化监测研究[J]. 地球信息科学学报, 2019, 21(5): 731 − 739.

LIU Kai, PENG Liheng, LI Xiang, et al. Monitoring the inter-annual change of mangroves based on the Google Earth Engine [J]. J Geo-inf Sci, 2019, 21(5): 731 − 739.
[10]

TELUGUNTLA P, THENKABAIL P S, OLIPHANT A, et al. A 30-m Landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform [J]. ISPRS J Photogramm Remote Sensing, 2018, 144(1): 325 − 340.
[11] 严欣荣, 张美曼, 郑亚雄, 等. 基于Sentinel-2的丛生竹林信息提取方法比较及分布特征[J]. 生态学杂志, 2020, 39(3): 1056 − 1066.

YAN Xinrong, ZHANG Meiman, ZHENG Yaxiong, et al. Comparison of extraction methods and the distribution characteristics of cluster bamboo forest information based on Sentinel-2 [J]. Chin J Ecol, 2020, 39(3): 1056 − 1066.
[12]

GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone [J]. Remote Sensing Environ, 2017, 202(1): 18 − 27.
[13] 谭深, 吴炳方, 张鑫. 基于Google Earth Engine与多源遥感数据的海南水稻分类研究[J]. 地球信息科学学报, 2019, 21(6): 937 − 947.

TAN Shen, WU Bingfang, ZHANG Xin. Mapping paddy rice in the Hainan Province using both Google Earth Engine and remote sensing images [J]. J Geo-inf Sci, 2019, 21(6): 937 − 947.
[14]

CHEN Bangqian, XIAO Xiangming, LI Xiangping, et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform [J]. ISPRS J Photogramm Remote Sensing, 2017, 131(1): 104 − 120.
[15]

GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J]. Sci Bull, 2019, 64(6): 370 − 373.
[16]

GONG Peng, LI Xuecao, ZHANG Wei. 40-Year (1978−2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing [J]. Sci Bull, 2019, 64(1): 756 − 763.
[17] 王彦武, 牛莉婷, 张峰, 等. 黄土区高标准梯田生态服务功能及其价值[J]. 水土保持学报, 2019, 33(6): 190 − 196.

WANG Yanwu, NIU Liting, ZHANG Feng, et al. Ecological service function and its value of high-standard terrace in loess region [J]. J Soil Water Conserv, 2019, 33(6): 190 − 196.
[18] 柴旭荣, 李明, 周义, 等. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315 − 325.

CHAI Xurong, LI Ming, ZHOU Yi, et al. Rapid land cover classification using Landsat time series based on the Google Earth Engine [J]. Remote Sensing Technol Appl, 2020, 35(2): 315 − 325.
[19] 王塞, 王思诗, 樊风雷. 基于时间序列分割算法的雅鲁藏布江流域NDVI(1985−2018)变化模式研究[J]. 生态学报, 2020, 40(19): 6863 − 6871.

WANG Sai, WANG Sishi, FAN Fenglei. Change patterns of NDVI (1985−2018) in the Yarlung Zangbo River Basin of China based on time series segmentation algorithm [J]. Acta Ecol Sin, 2020, 40(19): 6863 − 6871.
[20] 刘宝元, 刘瑛娜, 张科利, 等. 中国水土保持措施分类[J]. 水土保持学报, 2013, 27(2): 80 − 84.

LIU Baoyuan, LIU Yingna, ZHANG Keli, et al. Classification for soil conservation practices in China [J]. J Soil Water Conserv, 2013, 27(2): 80 − 84.
[21] 裴杰, 牛铮, 王力, 等. 基于Google Earth Engine云平台的植被覆盖度变化长时间序列遥感监测[J]. 中国岩溶, 2018, 37(4): 608 − 616.

PEI Jie, NIU Zheng, WANG Li, et al. Monitoring to variations of vegetation cover using long-term time series remote sensing data on the Google Earth Engine cloud platform [J]. Carsol Sin, 2018, 37(4): 608 − 616.
[22] 王立祥, 李永平, 许强. 中国粮食问题: 宁夏粮食生产能力提升及战略储备[M]. 银川: 阳光出版社, 2015: 92 − 93.