[1] 余涛, 蒋天宇, 刘旭, 等. 土壤重金属污染现状及检测分析技术研究进展 [J]. 中国地质, 2021, 48(2): 460 − 476.

YU Tao, JIANG Tianyu, LIU Xu, et al. Research progress in current status of soil heavy metal pollution and analysis technology [J]. Geology in China, 2021, 48(2): 460 − 476.
[2]

LIU Lin, HAN Jialiang, XU Zhidong, et al. Dietary exposure assessment of cadmium, arsenic, and lead in market rice from Sri Lanka [J]. Environmental Science and Pollution Research, 2020, 27(34): 42704 − 42712.
[3] 吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究 [J]. 环境科学学报, 2017, 37 (10): 3959 − 3967.

WU Pingping, LI Lujiu, LI Min. Effects of biochar and Fe-loaded biochar on the leaching and fraction transformation of Cd, Cu and As in multi-contaminated soil [J]. Acta Scientiae Circumstantiae, 2017, 37 (10): 3959 − 3967.
[4]

YANG Xing, HINZMANN M, PAN He, et al. Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions [J/OL]. Journal of Hazardous Materials, 2022, 421 : 126647[2024-01-30]. doi: 10.1016/j.jhazmat.2021.126647.
[5] 宋佩佩, 马文静, 王军, 等. 铁改性生物炭的制备及其在重金属污染土壤修复技术中的应用进展 [J]. 环境工程学报, 2022, 16 (12): 4018 − 4036.

SONG Peipei, MA Wenjing, WANG Jun, et al. Preparation of iron-modified biochar and its application in heavy metal contaminated soils [J]. Chinese Journal of Environmental Engineering, 2022, 16 (12): 4019 − 4036.
[6]

WEN Er, YANG Xing, CHEN Hanbo, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil [J/OL]. Journal of Hazardous Materials, 2021, 407 : 124344[2024-01-30]. doi:/10.1016/j.jhazmat.2020.124344.
[7] 秦怀婷, 曾小林, 刘程琳. 聚合硫酸铁的制备、改性及应用研究进展 [J]. 工业水处理, 2023, 43(7): 53 − 61.

QIN Huaiting, ZENG Xiaolin, LIU Chenglin. Research progress on preparation, modification, and application of polyferric sulfate [J]. Industrial Water Treatment, 2023, 43(7): 53 − 61.
[8] 谢登科. 聚合硫酸铁和活化硅酸复配除浊效果对比 [J]. 资源节约与环保, 2019(7): 71 − 72

XIE Dengke. The comparative effectiveness of composite coagulants containing polymeric ferric sulfate and activated silica sol for turbidity removal [J]. Resource Conservation and Environmental Protection, 2019(7): 71 − 72
[9] 戴志楠, 杨兴, 陈翰博, 等. 原始及铁改性生物质炭对污染土壤中As、Pb生物有效性和微生物群落结构的影响 [J]. 环境科学学报, 2022, 42(7): 456 − 465.

DAI Zhinan, YANG Xing, CHEN Hanbo, et al. Effect of raw and iron-modified biochars on the bioavailability of As and Pb and functional diversity of the microbial community in soils [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 456 − 465.
[10] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

LU Rukun. Methods for Agrochemical Analysis of Soil [M]. Beijing: China Agricultural Science and Technology Press, 2000.
[11] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响 [J]. 土壤学报, 2020, 57(3): 721 − 729.

BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedologica Sinica, 2020, 57(3): 721 − 729
[12]

TAN Guangcai, MAO Yi, WANG Hongyuan, et al. A comparative study of arsenic(Ⅴ), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon [J]. Chemical Engineering Research and Design, 2020, 159: 582 − 591.
[13] 顾绍茹, 杨兴, 陈翰博, 等. 小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响 [J]. 浙江农林大学学报, 2023, 40(1): 176 − 187.

GU Shaoru, YANG Xing, CHEN Hanbo, et al. Effects of biochar from Procambarus clarkia shells and Ficus microcarpa branches on soil nutrients and bioavailability of Cd and Pb [J]. Journal of Zhejiang A&F University, 2023, 40(1): 176 − 187.
[14]

ZHANG Jingyi, ZHOU Hang, GU Jiacun, et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L. ) [J/OL]. Environmental Pollution, 2020, 260 : 113970[2024-01-30]. doi: 10.1016/j.envpol.2020.113970.
[15]

HAO Bian, JIANG Wan, MUHAMMAD T, et al. Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(Ⅵ) stabilization in soil: kinetics and response surface methodology (RSM) [J/OL]. Environmental Pollution, 2021, 276 : 116745[2024-01-30]. doi:10.1016/j.envpol.2021.116745.
[16]

GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions [J]. Agriculture, Ecosystems & Environment, 2015, 206 : 46 − 59.
[17] 占亚楠, 王智, 孟亚利. 生物炭提高土壤磷素有效性的整合分析 [J]. 应用生态学报, 2020, 31(4): 1185 − 1193.

ZHAN Yanan, WANG Zhi, MENG Yali. Biochar addition improve soil phosphorus availability: a meta-analysis [J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1185 − 1193.
[18] 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究 [J]. 中国农学通报, 2011, 27(15): 16 − 25.

HE Xusheng, ZHANG Shuqing, SHE Diao, et al. Effects of biochar on soil and fertilizer and future research [J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 16 − 25.
[19]

DEENIK J L, MCCLELLAN A T, UEHARA G. Biochar volatile matter content effects on plant growth and nitrogen transformations in a tropical soil [C]//[s.l.] Western Nutrient Management Conference, Salt Lake City, 2009, 8 : 26 − 31.
[20]

WANG Shuai, LI Bo, ZHU Hanhua, et al. Long-term effects of biochar on trace metals accumulation in rice grain: a 7-year field experiment [J/OL]. Agriculture, Ecosystems & Environment, 2021, 315: 107446[2024-01-30]. doi: 10.1016/j.agee.2021.107446.
[21]

WANG Yaofeng, XIAO Xin, Chen Baoliang. Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms [J/OL]. Scientific Reports, 2018, 8 (1): 8040[2024-01-30]. doi:10.1038/s41598-018-26396-3.
[22]

SCHALLER J, PUPPE D, BUSSE J, et al. Silicification patterns in wheat leaves related to ontogeny and soil silicon availability under field conditions [J]. Plant and Soil, 2022, 477(1/2): 9 − 23.
[23] 胡祖武, 吴多基, 吴建富, 等. 富硅生物炭有效提高红壤性稻田土壤不同形态硅含量及水稻产量 [J]. 植物营养与肥料学报, 2022, 28(8): 1421 − 1429.

HU Zuwu, WU Duoji, WU Jianfu, et al. Silicon-rich biochar effectively increases the availability of soil silicon and rice yield in reddish paddy soil [J]. Journa of Plant Nutrition and Fertilizers, 2022, 28(8): 1421 − 1429.
[24]

YANG Xing, WEN Er, GE Chengjun, et al. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil [J/OL]. Journal of Hazardous Materials, 2023, 443 : 130203[2024-01-30]. doi:10.1016/j.jhazmat.2022.130203.
[25]

TANG Jiayi, ZHANG Lihua, ZHANG Jiachao, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost [J/OL]. Science of the Total Environment, 2020, 701 : 134751[2024-01-30]. doi: 10.1016/j.scitotenv.2019.134751.
[26] 王文慧, 蒋志慧, 张纪, 等. 生物炭对大豆根际土壤酶活性及产量的影响 [J]. 中国土壤与肥料, 2023(6): 147 − 153.

WANG Wenhui, JIANG Zhihui, ZHANG Ji, et al. The effect of biochar on soybean rhizosphere soil enzyme activity and yield [J]. Chinese Journal of Soil and Fertilizer, 2023(6): 147 − 153.
[27]

TRIPATHI P, TRIPATHI R D, SINGH R P, et al. Silicon mediates arsenic tolerance in rice (Oryza sativa L. ) through lowering of arsenic uptake and improved antioxidant defence system [J]. Ecological Engineering, 2013, 52: 96 − 103.
[28]

XUE Qin, RAN Ying, TAN Yunzhi, et al. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments [J]. Chemosphere, 2019, 224: 103 − 110.
[29]

LI Jianhong, WANG Shanli, ZHANG Jing, et al. Coconut-fiber biochar reduced the bioavailability of lead but increased its translocation rate in rice plants: elucidation of immobilization mechanisms and significance of iron plaque barrier on roots using spectroscopic techniques [J/OL]. Journal of Hazardous Materials, 2020, 389: 122117[2024-01-30]. doi: 10.1016/j.jhazmat.2020.122117.
[30]

PENG Dinghua, WU Bin, TAN Hang, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil [J]. Chemosphere, 2019, 228: 44 − 53.
[31]

SEYFFERTH A L, AMARAL D, LIMMER M A, et al. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice [J]. Environment International, 2019, 128: 301 − 309.
[32]

YU Zhihong, QIU Weiwen, WANG Fei, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L. ) cultivar [J]. Chemosphere, 2017, 168: 341 − 349.
[33] 黄冬芬, 王志琴, 刘立军. 铅胁迫下不同品种水稻对铅与微量元素的吸收分配差异 [J]. 热带作物学报, 2009, 30(12): 25 − 28.

HUANG Dongfen, WANG Zhiqing, LIU Lijun. Differences in absorption and distribution of Pb and trace elements in different rice varieties under lead stress [J]. Chinese Journal of Tropical Crops, 2009, 30(12): 25 − 28.
[34] 陈新红, 叶玉秀, 潘国庆, 等. 杂交水稻不同器官重金属铅浓度与累积量 [J]. 中国水稻科学, 2014, 28(1): 57 − 64.

CHEN Xinhong, YE Yuxiu, PAN Guoqing, et al. Concentration and accumulation of lead in different organs of hybrid rice [J]. Chinese Rice Science, 2014, 28(1): 57 − 64.
[35] 刘松涛, 李茜, 王小玲. 硅素营养对水稻抗重金属毒害的研究进展 [J]. 湖北农业科学, 2017, 56(3): 405 − 408, 417.

LIU Songtao, LI Qian, WANG Xiaoling. Progress in research of the resistance to heavy metal toxicity in rice by silicon nutrient [J]. Hubei Agricultural Sciences, 2017, 56(3): 405 − 408, 417.
[36] 阮麟乔, 梁美娜, 丁艳梅, 等. 施加Fe3O4/桑树杆生物炭对土壤砷形态和水稻砷含量的影响 [J]. 环境科学, 2023, 44(8): 4468 − 4478.

RUAN Lingqiao, LIANG Meina, DING Yanmei, et al. Application of Fe3O4/mulberry stem biochar effects on soil arsenic species and rice arsenic content [J]. Environmental Science, 2023, 44(8): 4468 − 4478.