[1] 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16): 5565 − 5577.

WANG Quanzhen, LIU Qian, GAO Yani, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants [J]. Acta Ecol Sin, 2017, 37(16): 5565 − 5577.
[2] 王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J/OL]. 中国科学: 生命科学, 2021, 51(10)[2021-10-10]. doi:10.1360/SSV-2021-0162.

WANG Lei, GUO Yan, YANG Shuhua. Designed breeding for adaptation of crops to environmental abiotic stresses[J/OL]. Sci Sin Vitae, 2021, 51(10)[2021-10-10]. doi:10.1360/SSV-2021-0162.
[3] 温赛群, 丁红, 徐扬, 等. 不同耐盐性花生品种对NaCl胁迫的光合和抗逆生理响应特征[J]. 西北植物学报, 2021, 41(9): 1535 − 1544.

WEN Saiqun, DING Hong, XU Yang, et al. Physiological response characteristics of peanut varietieswith different salt resistance under NaCl stress [J]. Acta Bot Boreali-Occident Sin, 2021, 41(9): 1535 − 1544.
[4]

JAMES R A, BLAKE C, BYRT C S, et al. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions [J]. J Exp Bot, 2011, 62(8): 2939 − 2947.
[5]

MAATHUIS F J M, ANNA A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios [J]. Ann Bot, 1999, 84(2): 123 − 133.
[6] 付丽, 刘加珍, 陶宝先, 等. 盐生植物对盐渍土壤环境的适应机制研究综述[J]. 江苏农业科学, 2021, 49(15): 32 − 39.

FU Li, LIU Jiazhen, TAO Baoxian, et al. Adaptive mechanism of halophytes to saline soil environment: a review [J]. Jiangsu Agric Sci, 2021, 49(15): 32 − 39.
[7] 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响[J]. 植物生理学报, 2017, 53(3): 470 − 476.

SUN Congcong, ZHAO Haiyan, ZHENG Caixia. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling [J]. Plant Physiol J, 2017, 53(3): 470 − 476.
[8] 刘政, 胡孙田, 沈晓飞, 等. 外源褪黑素处理对月季幼苗盐胁迫的缓解效应[J]. 浙江农林大学学报, 2020, 37(5): 957 − 962.

LIU Zheng, HU Suntian, SHEN Xiaofei, et al. Alleviation of exogenous melatonin on rose seedlings under salt stress [J]. J Zhejiang A&F Univ, 2020, 37(5): 957 − 962.
[9] 王锴, 张立新, 高梅, 等. 盐胁迫对2种苹果属植物愈伤组织及组培苗生长和有机渗透调节物质累积的影响[J]. 西北农业学报, 2013, 22(2): 112 − 118.

WANG Kai, ZHANG Lixin, GAO Mei, et al. Effects of salinity stress on growth and organic osmolytes accumulation of callus and tissue culture seedings of two Malus [J]. Acta Agric Boreali-Occident Sin, 2013, 22(2): 112 − 118.
[10] 杜中军, 翟衡, 罗新书, 等. 苹果砧木耐盐性鉴定及其指标判定[J]. 果树学报, 2002, 19(1): 4 − 7.

DU Zhongjun, ZHAI Heng, LUO Xinshu, et al. Salt-tolerance identification on apple rootstocks [J]. J Fruit Sci, 2002, 19(1): 4 − 7.
[11] 尚娜, 李景富, 吴明臣. 盐胁迫下番茄幼苗对赤霉素处理的响应[J]. 基因组学与应用生物学, 2017, 36(7): 2965 − 2972.

SHANG Na, LI Jingfu, WU Mingchen. Response of tomato seedlings to gibberellin treatment under salt stress [J]. Genomics Appl Biol, 2017, 36(7): 2965 − 2972.
[12]

SHEN Yue, SHEN Like, SHEN Zhenxing, et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice [J]. Plant Cell Environ, 2015, 38(12): 2766 − 2779.
[13]

YANG Chunwu, GUO Weiqing, SHI Decheng. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata [J]. Agron J, 2010, 102(4): 1081 − 1089.
[14] 刘云芬, 彭华, 王薇薇, 等. 植物耐盐性生理与分子机制研究进展[J]. 江苏农业科学, 2019, 47(12): 30 − 36.

LIU Yunfen, PENG Hua, WANG Weiwei, et al. Research progress on physiological and molecular mechanisms of salt tolerance for plants [J]. Jiangsu Agric Sci, 2019, 47(12): 30 − 36.
[15] 江超. 紫花苜蓿耐盐生理特性及转录组分析[D]. 泰安: 山东农业大学, 2014.

JIANG Chao. Analysis of the Alfalfa (Medicago sativa L. ) Transcriptome and Physiological Property in Response to Salinity Stress[D]. Tai’an: Shandong Agricultural University, 2014.
[16] 顾帆, 季梦成, 顾翠花, 等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5): 894 − 901.

GU Fan, JI Mengcheng, GU Cuihua, et al. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia [J]. Journal of Zhejiang A&F University, 2019, 36(5): 894 − 901.
[17] 王树凤, 陈益泰, 潘红伟, 等. 土壤盐胁迫下桤木8个无性系生理特性的变化[J]. 浙江林学院学报, 2006, 23(1): 19 − 23.

WANG Shufeng, CHEN Yitai, PAN Hongwei, et al. Changes of physiological characteristics of eight Alnus cremastogyne clones under salt stress [J]. J Zhejiang For Coll, 2006, 23(1): 19 − 23.
[18]

ISMAIL A, TAKEDA S, NICK P. Life and death under salt stress: same players, different timing? [J]. J Exp Bot, 2014, 65(12): 2963 − 2979.
[19]

SHEN Xiaoyan, WANG Zenglan, SONG Xiaofeng, et al. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis [J]. Plant Mol Biol, 2014, 86(3): 303 − 317.
[20]

CAO Wanhao, LIU Jun, HE Xianjian, et al. Modulation of ethylene responses affects plant salt-stress responses [J]. Plant Physiol, 2007, 143(2): 707 − 719.
[21]

KNIGHT H, TREWAVAS A J, KNIGHT M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity [J]. Plant J, 1997, 12(5): 1067 − 1078.
[22]

ZHU Jiankang. Regulation of ion homeostasis under salt stress [J]. Curr Opin Plant Biol, 2003, 6(5): 441 − 445.
[23] 陈莎莎, 兰海燕. 植物对盐胁迫响应的信号转导途径[J]. 植物生理学报, 2011, 47(2): 119 − 128.

CHEN Shasha, LAN Haiyan. Signal transduction pathways in response to salt stress in plants [J]. Plant Physiol J, 2011, 47(2): 119 − 128.
[24]

LEUNG J, GIRAUDAT J. Abscisic acid signal transuction [J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 199 − 222.
[25]

PELEG Z, BLUMWALD E. Hormone balance and abiotic stress tolerance in crop plants [J]. Curr Opin Plant Biol, 2011, 14(3): 290 − 295.
[26]

KANG D J, SEO Y J, LEE J D, et al. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars [J]. J Agron Crop Sci, 2005, 191: 273 − 282.
[27]

YOON J Y, HAMAYUN M, LEE S K, et al. Methyl jasmonate alleviated salinity stress in soybean [J]. J Crop Sci Biotechnol, 2009, 12: 63 − 68.
[28]

WU Hua, YE Haiyan, YAO Ruifeng, et al. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice [J]. Plant Sci, 2015, 232: 1 − 12.
[29]

HAZMAN M, HAUSE B, EICHE E, et al. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity [J]. J Exp Bot, 2015, 66(11): 3339 − 3352.
[30]

ABOUELSAAD I, RENAULT S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress [J]. J Plant Physiol, 2018, 226: 136 − 144.
[31]

WANG Zhiping, XING Huili, DONG Li, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation[J/OL]. Genome Biol, 2016, 16(1): 144[2021-10-10]. doi: 10.1186/s13059-015-p0715-0.
[32] 朱丽颖, 郑月萍, 徐雪珍, 等. 1种准确、简便测定CRISPR/Cas9基因编辑效率的方法[J]. 江苏农业学报, 2020, 36(2): 299 − 305.

ZHU Liying, ZHENG Yueping, XU Xuezhen, et al. A convenient and accurate method for determining the efficiency of CRISPR/Cas9-based gene editing [J]. Jiangsu J Agric Sci, 2020, 36(2): 299 − 305.
[33] 郭勇, 王玉成, 王智博. 1种基于农杆菌介导的拟南芥瞬时转化技术优化[J]. 东北林业大学学报, 2016, 44(6): 41 − 44, 83.

GUO Yong, WANG Yucheng, WANG Zhibo. Optimizing transient genetic transformation method on Arabidopsis plants mediated by Agrobacterium tumefaciens [J]. J Northeast For Univ, 2016, 44(6): 41 − 44, 83.
[34] 胡欢, 李媛, 丁筠, 等. 农杆菌介导遗传转化获得转CP4基因籼稻的研究[J]. 浙江农林大学学报, 2021, 38(2): 420 − 425.

HU Huan, LI Yuan, DING Yun, et al. Agrobacterium-mediated transformation of CP4 gene into indica rice [J]. J Zhejiang A&F Univ, 2021, 38(2): 420 − 425.
[35]

STASWICK P E, SU Wenpei, HOWELL S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant [J]. Proc Natl Acad Sci, 1992, 89(15): 6837 − 6840.
[36]

XU Changcheng, YU Bin, CORNISH A J, et al. Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase [J]. Plant J, 2006, 47(2): 296 − 309.
[37]

DASZKOWSKA-GOLEC A. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormone [J]. Omics J Integrative Biol, 2011, 15(11): 763 − 774.
[38]

DELGADO C, MORA-POBLETE F, AHMAR S, et al. Jasmonates and plant salt stress: molecular players, physiological effects, and improving tolerance by using genome-associated tools[J/OL]. Int J Mol Sci, 2021, 22(6): 3082[2021-10-10]. doi: 10.3390/ijms22063082.
[39] 李明, 冷冰莹, 张晗菡, 等. 盐胁迫下调控玉米胞内Na+/K+比稳定的主要机制与措施[J]. 山东农业科学, 2021, 53(6): 133 − 138.

LI Ming, LENG Bingying, ZHANG Hanhan, et al. Main mechanism and measures of regulating stability of intracellular Na+/K+ ratio in maize under salt stress [J]. Shandong Agric Sci, 2021, 53(6): 133 − 138.
[40]

ZHANG Ming, LIANG Xiaoyan, WANG Limin, et al. A HAK family Na+ transporter confers natural variation of salt tolerance in maize [J]. Nat Plants, 2019, 5(12): 1297 − 1308.
[41]

KRAEV A, QUEDNAU B D, LEACH S, et al. Molecular cloning of a third member of the potassium-dependent sodium-calcium exchanger gene family, NCKX3 [J]. J Biol Chem, 2001, 276(25): 23161 − 23172.
[42]

GIERTH M, MÄSER P. Potassium transporters in plants: involvement in K+ acquisition, redistribution and homeostasis [J]. FEBS Lett, 2007, 581(12): 2348 − 2356.
[43] 柴薇薇, 王文颖, 崔彦农, 等. 植物钾转运蛋白KUP/HAK/KT家族研究进展[J]. 植物生理学报, 2019, 55(12): 1747 − 1761.

CHAI Weiwei, WANG Wenying, CUI Yannong, et al. Research progress of function on KUP/HAK/KT family in plants [J]. Plant Physiol J, 2019, 55(12): 1747 − 1761.
[44] 卫昭君, 牛冰洁, 王永新, 等. 茉莉酸甲酯对盐胁迫下偏关苜蓿种子萌发和幼苗生长的影响[J]. 草地学报, 2020, 28(4): 998 − 1005.

WEI Zhaojun, NIU Bingjie, WANG Yongxin, et al. Effect of methyl jasmonate on seed germination and seeding growth of Medicago sativa‘Pianguan’ under salt stress [J]. Acta Agrestia Sin, 2020, 28(4): 998 − 1005.
[45]

STASWICK P E, TIRYAKI I, ROWE M L. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation [J]. Plant Cell, 2002, 14(6): 1405 − 1415.
[46] 毛佳昊, 熊晓辉, 卢一辰. 茉莉酸调控植物应对逆境胁迫作用的研究进展[J]. 生物加工过程, 2021, 19(4): 413 − 419, 462.

MAO Jiahao, XIONG Xiaohui, LU Yichen. Advances in the regulation of plant stress response by jasmonic acid [J]. Chin J Bioprocess Eng, 2021, 19(4): 413 − 419, 462.
[47]

HOWE G A, MAJOR I T, KOO A J. Modularity in jasmonatesignaling for multistressresilience [J]. Annu Rev Plant Biol, 2018, 69: 387 − 415.
[48]

ABE H, URAO T, ITO T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell, 2003, 15(1): 63 − 78.
[49]

LORENZO O, CHICO J M, SNCHEZ-SERRANO J J, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis [J]. Plant Cell, 2004, 16(7): 1938 − 1950.
[50]

IWASAKI T, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis [J]. Mol Gen Genet, 1995, 247(4): 391 − 398.
[51] 张彦桃, 王欣, 祁智. 拟南芥高亲和性钾转运体AtHAK5参与植物根对盐胁迫及ABA的反应[J]. 华北农学报, 2014, 29(6): 214 − 219.

ZHANG Yangtao, WANG Xin, QI Zhi. Arabidopsis thalianahigh-affinity potassium transporter AtHAK5 participated in the response to salt stress and ABA in the plant root [J]. Acta Agric Boreali-Sin, 2014, 29(6): 214 − 219.
[52]

QI Zhi, HAMPTON C R, SHIN R, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis [J]. J Exp Bot, 2008, 59(3): 595 − 607.