[1] SAITO K, YONEKURA-SAKAKIBARA K, NAKABAYASHI R, et al. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity [J]. Plant Physiology and Biochemistry, 2013, 72: 21−34.
[2] HUANG Junli, GU Min, LAI Zhibing, et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress [J]. Plant Physiology, 2010, 153(4): 1526−1538.
[3] REICHERT A I, HE Xianzhi, DIXON R A. Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes [J]. Biochemical Journal, 2009, 424(2): 233−242.
[4] 曾嘉丽, 欧阳林娟, 刘家林, 等. 水稻PAL基因的全基因组分析及胁迫表达研究[J]. 基因组学与应用生物学, 2018, 37(9): 3881−3888.

ZENG Jiali, OUYANG Linjuan, LIU Jialin, et al. Whole genome analysis and stress expression research of PAL gene in rice [J]. Genomics and Applied Biology, 2018, 37(9): 3881−3888.
[5]

YAN Feng, LI Huaizhu, ZHAO Peng. Genome-wide identification and transcriptional expression of the PAL gene family in common walnut (Juglans regia L. )[J/OL]. Genes, 2019, 10(1): 46[2024-10-01]. DOI: 10.3390/genes10010046.
[6]

ROHDE A, MORREEL K, RALPH J, et al. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism [J]. The Plant Cell, 2004, 16(10): 2749−2771.
[7]

LI Guohui, SONG Cheng, MANZOOR M A, et al. Functional and kinetics of two efficient phenylalanine ammonia lyase from Pyrus bretschneideri[J/OL]. BMC Plant Biology, 2023, 23(1): 612[2024-10-01]. DOI: 10.1186/s12870-023-04586-0.
[8]

BAGAL U R, LEEBENS-MACK J H, LORENZ W W, et al. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage[J/OL]. BMC Genomics, 2012, 13(suppl 3): S1[2024-10-01]. DOI: 10.1186/1471-2164-13-S3-S1235.
[9]

PANT S, HUANG Yinghua. Genome-wide studies of PAL genes in sorghum and their responses to aphid infestation[J/OL]. Scientific Reports, 2022, 12(1): 22537[2024-10-01]. DOI: 10.1038/s41598-022-25214-1.
[10] 谢林峰, 凌晓晓, 黄圣妍, 等. 临安区山核桃林地土壤水解酶活性空间分布特征及土壤肥力评价[J]. 浙江农林大学学报, 2022, 39(3): 625−634.

XIE Linfeng, LING Xiaoxiao, HUANG Shengyan, et al. Spatial distribution characteristics of soil hydrolase activities and soil fertility evaluation of Carya cathayensis forests in Lin’an District [J]. Journal of Zhejiang A&F University, 2022, 39(3): 625−634.
[11] 张璐璐, 贾桂民, 叶建丰, 等. 浙江临安山核桃干腐病发生发展规律[J]. 浙江农林大学学报, 2013, 30(1): 148−152.

ZHANG Lulu, JIA Guimin, YE Jianfeng, et al. Frequency of Carya cathayensis canker disease in Lin’an City, Zhejiang Province [J]. Journal of Zhejiang A&F University, 2013, 30(1): 148−152.
[12]

LIU Chen, FAN Hongrui, ZHANG Jiaqi, et al. Combating browning: mechanisms and management strategies in in vitro culture of economic woody plants[J/OL]. Forestry Research, 2024, 4: e032[2024-10-01]. DOI: 10.48130/forres-0024-0026.
[13]

NAGY E Z A, TORK S D, LANG P A, et al. Mapping the hydrophobic substrate binding site of phenylalanine ammonia-lyase from Petroselinum crispum [J]. ACS Catalysis, 2019, 9(9): 8825−8834.
[14]

TOMOIAGĂ R B, TORK S D, FILIP A, et al. Phenylalanine ammonia-lyases: combining protein engineering and natural diversity [J]. Applied Microbiology and Biotechnology, 2023, 107(4): 1243−1256.
[15]

XU Feng, DENG Guang, CHENG Shuiyuan, et al. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia [J]. Molecules, 2012, 17(7): 7810−7823.
[16]

CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202.
[17]

HUANG Youjun, XIAO Lihong, ZHANG Zhongren, et al. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition[J/OL]. GigaScience, 2019, 8(5): giz036[2024-10-01]. DOI: 10.1093/gigascience/giz036.
[18]

PAYSAN-LAFOSSE T, BLUM M, CHUGURANSKY S, et al. InterPro in 2022 [J]. Nucleic Acids Research, 2023, 51(D1): D418−D427.
[19]

GASTEIGER E, HOOGLAND C, GATTIKER A, et al. Protein identification and analysis tools on the ExPASy server[M]// WALKER J M. The Proteomics Protocols Handbook. Totowa N J: Humana Press, 2005: 571−607.
[20]

THUMULURI V, ARMENTEROS J J A, JOHANSEN A R, et al. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models [J]. Nucleic Acids Research, 2022, 50(W1): W228−W234.
[21]

GEOURJON C, DELÉAGE G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Computer Applications in the Biosciences, 1995, 11(6): 681−684.
[22]

KELLEY L A, MEZULIS S, YATES C M, et al. The Phyre2 web portal for protein modeling, prediction and analysis [J]. Nature Protocols, 2015, 10(6): 845−858.
[23]

BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite [J]. Nucleic Acids Research, 2015, 43(W1): W39−W49.
[24]

TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022−3027.
[25]

OKADA T, MIKAGE M, SEKITA S. Molecular characterization of the phenylalanine ammonia-lyase from Ephedra sinica [J]. Biological & Pharmaceutical Bulletin, 2008, 31(12): 2194−2199.
[26]

WANNER L A, LI Guoqing, WARE D, et al. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana [J]. Plant Molecular Biology, 1995, 27(2): 327−338.
[27] 施圆圆, 张声祥, 赵德蕊, 等. 异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析[J]. 植物科学学报, 2019, 37(2): 221−229.

SHI Yuanyuan, ZHANG Shengxiang, ZHAO Derui, et al. Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum [J]. Plant Science Journal, 2019, 37(2): 221−229.
[28]

LIN Weiping, LIU Ao, WENG Caihong, et al. Cloning and characterization of a novel phenylalanine ammonia-lyase gene from Inonotus baumii [J]. Enzyme and Microbial Technology, 2018, 112: 52−58.
[29]

DONG Chunjuan, CAO Ning, ZHANG Zhigang, et al. Phenylalanine ammonia-lyase gene families in cucurbit species: structure, evolution, and expression [J]. Journal of Integrative Agriculture, 2016, 15(6): 1239−1255.
[30]

SHANG Qingmao, LI Liang, DONG Chunjuan. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. [J]. Planta, 2012, 236(4): 1093−1105.
[31]

DONG Chunjuan, SHANG Qingmao. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus) [J]. Planta, 2013, 238(1): 35−49.
[32]

YANG Ji, HUANG Jinxia, GU Hongya, et al. Duplication and adaptive evolution of the Chalcone synthase genes of Dendranthema (Asteraceae) [J]. Molecular Biology and Evolution, 2002, 19(10): 1752−1759.
[33]

WU Zhihua, GUI Songtao, WANG Shuzhen, et al. Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms[J/OL]. BMC Evolutionary Biology, 2014, 14: 100[2024-10-01]. DOI: 10.1186/1471-2148-14-100.
[34]

HAMBERGER B, ELLIS M, FRIEDMANN M, et al. Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families [J]. Canadian Journal of Botany, 2007, 85(12): 1182−1201.
[35]

LI Guohui, WANG Han, CHENG Xi, et al. Comparative genomic analysis of the PAL genes in five Rosaceae species and functional identification of Chinese white pear[J/OL]. PeerJ, 2019, 7: e8064[2024-10-01]. DOI: 10.7717/peerj.8064.
[36]

AMJAD M, WANG Yuexia, HAN Shiming, et al. Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress[J/OL]. BMC Genomic Data, 2024, 25(1): 76[2024-10-01]. DOI 10.1186/s12863-024-01259-1.
[37]

RASOOL F, UZAIR M, NAEEM M K, et al. Phenylalanine ammonia-lyase (PAL) genes family in wheat (Triticum aestivum L. ): genome-wide characterization and expression profiling[J/OL]. Agronomy, 2021, 11(12): 2511[2024-10-01]. DOI: 10.3390/agronomy11122511.