[1] 中国植物志编委会. 中国植物志(第71卷)[M]. 北京: 科学出版社, 1999: 242.

Editorial Committee of Flora of China. Flora Reipublicae Popularis Sinicae (Tomus 71) [M]. Beijing: Science Press, 1999: 242.
[2] 彭仙丽, 李莉, 张光富, 等. 苏南山区5个斑块香果树群落物种组成及多样性特征[J]. 植物资源与环境学报, 2017, 26(4): 93 − 100.

PENG Xianli, LI Li, ZHANG Guangfu, et al. Species composition and diversity characteristics of Emmenopterys henryi communities in five patches in the mountainous area of southern Jiangsu [J]. Journal of Plant Resources and Environment, 2017, 26(4): 93 − 100.
[3] 陈锋, 谢文远, 张芬耀, 等. 浙江省国家重点保护野生植物的多样性及濒危现状[J]. 浙江农林大学学报, 2022, 39(5): 923 − 930.

CHEN Feng, XIE Wenyuan, ZHANG Fenyao, et al. Diversity and endangered status of Chinese key protected wild plants in Zhejiang Province [J]. Journal of Zhejiang A&F University, 2022, 39(5): 923 − 930.
[4] 郑子洪, 郑伟成, 郑蓉, 等. 香果树保护生物学研究进展[J]. 浙江林业科技, 2022, 42(4): 5 − 11.

ZHENG Zihong, ZHENG Weicheng, ZHENG Rong, et al. Research progress on conservation biology of Emmenopterys henryi [J]. Journal of Zhejiang Forest Science and Technology, 2022, 42(4): 5 − 11.
[5]

BELL T, NEWMAN J A, SILVERMAN B W, et al. The contribution of species richness and composition to bacterial services [J]. Nature, 2005, 436: 1157 − 1160.
[6]

van NULAND M E, WOOLIVER R C, PFENNIGWERTH A A, et al. Plant-soil feedbacks: connecting ecosystem ecology and evolution [J]. Functional Ecology, 2016, 30: 1032 − 1042.
[7]

LI Xiaogang, JOUSSET A, de BOER W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome [J]. The ISME Journal, 2019, 13(3): 738 − 751.
[8]

de VRIES F T, LIIRI M E, BJØRNLUND L, et al. Land use alters the resistance and resilience of soil food webs to drought [J]. Nature Climate Change, 2012, 2: 276 − 280.
[9]

WARING B G, AVERILL C, HAWKES C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models [J]. Ecology Letters, 2013, 16: 887 − 894.
[10]

SHANG Kankan, CHEN Bo, ZHANG Xiaojun, et al. Topographic influences on the population persistence of a tertiary relict deciduous tree Emmenopterys henryi Oliv. on Mt. Tianmu, eastern China [J]. Applied Ecology and Environmental Reserch, 2020, 18(5): 6053 − 6067.
[11] 胡瑞. 基于植物-微生物相互作用探究极小种群百山祖冷杉潜在濒危原因[D]. 上海: 华东师范大学, 2022.

HU Rui. Exploring the Potential Endangered Causes of the Rare Species of Abies baishanzuensis Based on Plant Microbial Interaction [D]. Shanghai: East China Normal University, 2022.
[12] 张红芳, 李小红, 何刚, 等. 香果树可培养内生真菌的群落结构及功能活性菌株的筛选[J]. 生态科学, 2020, 39(5): 34 − 47.

ZHANG Hongfang, LI Xiaohong, HE Gang, et al. Community structure of culturable endophytic fungi isolated from Emmenopterys henryi Oliv. and screening for functional activated strains [J]. Ecological Science, 2020, 39(5): 34 − 47.
[13] 高宁, 邢意警, 熊瑞, 等. 丛枝菌根真菌和溶磷细菌协调植物获取磷素的机制[J]. 浙江农林大学学报, 2023, 40(6): 1167 − 1180.

GAO Ning, XING Yijing, XIONG Rui, et al. Mechanisms of plant P acquisition coordinated by arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1167 − 1180.
[14]

CHEN Lei, SWENSON N G, JI Niuniu, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest [J]. Science, 2019, 366(6461): 124 − 128.
[15]

LYNCH J M, BENEDETTI A, INSAM H, et al. Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms [J]. Biology and Fertility of Soils, 2004, 40: 363 − 385.
[16] 何柳, 曹敏敏, 鲁建兵, 等. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报, 2022, 39(6): 1267 − 1277.

HE Liu, CAO Minmin, LU Jianbing, et al. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province [J]. Journal of Zhejiang A&F University, 2022, 39(6): 1267 − 1277.
[17] 熊文君, 祝贺, 李家宝, 等. 贡嘎山峨眉冷杉根际、非根际土壤细菌群落的时空分布及影响因素[J]. 应用与环境生物学报, 2021, 27(5): 1130 − 1137.

XIONG Wenjun, ZHU He, LI Jiabao, et al. Spatiotemporal distribution patterns and drivers of bacterial communities in the rhizosphere and bulk soil under an Abies fabri forest on Gongga Mountain [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(5): 1130 − 1137.
[18] 杨虎, 马巧蓉, 杨君珑, 等. 宁夏南部生态移民迁出区不同恢复模式土壤微生物群落特征[J]. 应用生态学报, 2022, 33(1): 219 − 228.

YANG Hu, MA Qiaorong, YANG Junlong, et al. Characteristics of soil microbial communities in different restoration models in the ecological immigrants’ emigration area in southern Ningxia, China [J]. Chinese Journal of Applied Ecology, 2022, 33(1): 219 − 228.
[19] 陆志成, 温远光, 周晓果, 等. 岩溶地区森林自然恢复过程中植物和土壤微生物多样性的关联分析[J]. 广西科学, 2022, 29(1): 108 − 119.

LU Zhicheng, WEN Yuanguang, ZHOU Xiaoguo, et al. Correlation analysis of plant and soil microbial diversity during forest natural restoration in karst region, southwest China [J]. Guangxi Sciences, 2022, 29(1): 108 − 119.
[20]

van der HEIJDEN M G A, KLIRONOMOS K N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature, 1998, 396: 69 − 72.
[21]

BARBERAN M, MCGUIRE K L, WOLF J A, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest [J]. Ecology Letters, 2015, 18: 1397 − 1405.
[22] 郑伟成, 朱爱军, 张方纲, 等. 九龙山自然保护区国家重点保护野生植物优先保护序列研究[J]. 浙江林业科技, 2012, 32(6): 47 − 51.

ZHENG Weicheng, ZHU Aijun, ZHANG Fanggang, et al. Conservation priorities for plants in Jiulongshan National Nature Reserve [J]. Journal of Zhejiang Forest Science and Technology, 2012, 32(6): 47 − 51.
[23] 潘金贵, 韦直. 浙江九龙山自然保护区自然资源研究[M]. 北京: 中国林业出版社, 1995.

PAN Jingui, WEI Zhi. Studies on Natural Resources of Jiulongshan Nature Reserve in Zhejiang [M]. Beijing: China Forestry Publishing House, 1995.
[24] 全国农业技术推广服务中心. 土壤分析技术规范 [M]. 2版. 北京: 中国农业出版社, 2006.

National Agricultural Technology Extension Service Center. The Technical Manual of Soil Analysis [M]. 2nd ed. Beijing: China Agriculture Press, 2006.
[25] 郑子洪, 郭小华, 包晓梅, 等. 浙江九龙山香果树群落乔木层物种的多样性格局[J]. 热带亚热带植物学报, 2023, 31(4): 455 − 464.

ZHENG Zihong, GUO Xiaohua, BAO Xiaomei, et al. Species diversity pattern of arbor layer species in Emmenopterys henryi communities in Jiulongshan, Zhejiang Province [J]. Journal of Tropical and Subtropical Botany, 2023, 31(4): 455 − 464.
[26]

JOST L. Partitioning diversity into independent alpha and beta components [J]. Ecology, 2007, 88: 2427 − 2439.
[27] 翁晓虹, 隋心. 基于Web of Science的森林土壤微生物多样性研究趋势分析[J]. 中国农学通报, 2022, 38(10): 157 − 164.

WENG Xiaohong, SUI Xin. Research on forest soil microbial diversity based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 157 − 164.
[28] 丛微, 于晶晶, 喻海茫, 等. 不同气候带森林土壤微生物多样性和群落构建特征[J]. 林业科学, 2022, 58(2): 70 − 79.

CONG Wei, YU Jingjing, YU Haimang, et al. Diversity and community assembly of forest soil microorganisms in different climatic zones [J]. Scientia Silvae Sinicae, 2022, 58(2): 70 − 79.
[29] 陈晓琳, 吴福忠, 岳楷, 等. 干旱和湿润地区森林土壤微生物群落对降水改变的不同响应[J]. 亚热带资源与环境学报, 2022, 17(4): 1 − 8.

CHEN Xiaolin, WU Fuzhong, YUE Kai, et al. Differential responses of microbial communities to precipitation changes in forest soils between arid and humid areas [J]. Journal of Subtropical Resources and Environment, 2022, 17(4): 1 − 8.
[30] 厉桂香, 马克明. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 2018, 38(5): 1521 − 1529.

LI Guixiang, MA Keming. Progress in the study of elevational patterns of soil microbial diversity [J]. Acta Ecologica Sinica, 2018, 38(5): 1521 − 1529.
[31] 吴红萍. 海南鹦哥岭热带山地雨林土壤微生物多样性的海拔分布格局及其驱动因子研究[D]. 海口: 海南师范大学, 2022.

WU Hongping. Study on Altitude Distribution Patterns and Driving Factors of Soil Microbial Diversity in the Tropical Montane Rainforest of Yinggeling National Nature Reserve in Hainan Island [D]. Haikou: Hainan Normal University, 2022.
[32]

DELGADO-BAQUERIZO M, ELDRIDGE D J. Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale [J]. Ecosystems, 2019, 22: 1220 − 1231.