[1] 朱教君, 康宏樟, 许美玲. 科尔沁沙地南缘樟子松(Pinus sylvestris var. mongolica)人工林天然更新障碍[J]. 生态学报, 2007, 27(10): 4086 − 4095.

ZHU Jiaojun, KANG Hongzhang, XU Meiling. Natural regeneration barriers of Pinus sylvestris var. mongolica plantations in southern Keerqin Sandy Land, China [J]. Acta Ecol Sin, 2007, 27(10): 4086 − 4095.
[2] 吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 2004, 15(12): 2225 − 2228.

WU Xiangyun, JIANG Fengqi, LI Xiaodan, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land [J]. Chin J Appl Ecol, 2004, 15(12): 2225 − 2228.
[3] 宋立宁, 朱教君, 郑晓. 基于沙地樟子松人工林衰退机制的营林方案[J]. 生态学杂志, 2017, 36(11): 3249 − 3256.

SONG Lining, ZHU Jiaojun, ZHENG Xiao. Forestation and management scheme of Pinus sylvestris var. mongolica plantations in sandy lands based on their decline mechanisms [J]. Chin J Ecol, 2017, 36(11): 3249 − 3256.
[4]

HESSEN D. Stoichiometry in food webs: Lotka revisted [J]. Oikos, 1997, 7(9): 95 − 200.
[5] 陈军强, 张蕊, 侯尧宸, 等. 亚高山草甸植物群落物种多样性与群落C、N、P生态化学计量的关系[J]. 植物生态学报, 2013, 37(11): 979 − 987.

CHEN Junqiang, ZHANG Rui, HOU Yaochen, et al. Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow [J]. Chin J Plant Ecol, 2013, 37(11): 979 − 987.
[6] 梅杰, 周国英. 不同林龄马尾松林根际与非根际土壤微生物、酶活性及养分特征[J]. 中南林业科技大学学报, 2011, 31(4): 46 − 49.

MEI Jie, ZHOU Guoying. Study of rhizosphere and non-rhizosphere microbial, enzyme activity and nutrients element content of soil in different stand ages Pinus massoniana forest [J]. J Cent South Univ For Technol, 2011, 31(4): 46 − 49.
[7]

FRASER T D, LYNCH D H, GAIERO J, et al. Quantification of bacterial non-specific acid (PhoC) and alkaline (PhoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields [J]. Appl Soil Ecol, 2017, 111: 48 − 56.
[8]

BALAKRISHNAN B, SAHU B K, RANISHREE J K, et al. Assessment of heavy metal concentrations and associated resistant bacterial communities in bulk and rhizosphere soil of Avicennia marina of Pichavaram mangrove, India [J]. Environ Earth Sci, 2017, 76(1): 58. doi: 10.1007/s12665-016-6378-7.
[9]

ANGST G, INGRID K, KIRFEL K, et al. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.) [J]. Geoderma, 2016, 264: 179 − 187.
[10]

BIRD J A, HERMAN D J, FIRESTONE M K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil [J]. Soil Biol Biochem, 2011, 43(4): 718 − 725.
[11] 王凯, 沈潮, 宋立宁, 等. 持续干旱下沙地樟子松幼苗C、N、P化学计量变化规律[J]. 生态学杂志, 2020, 39(7): 2175 − 2184.

WANG Kai, SHEN Chao, SONG Lining, et al. Variations in C, N and P stoichiometry of Pinus sylvestris var. mongolica seedlings under continuous drought [J]. Chin J Ecol, 2020, 39(7): 2175 − 2184.
[12] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741 − 748.

WANG Kai, ZHAO Chengjiao, ZHANG Risheng, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities [J]. Chin J Ecol, 2020, 39(3): 741 − 748.
[13] 赵姗宇, 黎锦涛, 孙学凯, 等. 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征[J]. 生态学报, 2018, 38(20): 7189 − 7197.

ZHAO Shanyu, LI Jintao, SUN Xuekai, et al. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions [J]. Acta Ecol Sin, 2018, 38(20): 7189 − 7197.
[14] 淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征[J]. 干旱区研究, 2018, 35(4): 789 − 795.

SHU Min, JIANG Tao, WANG Dongli, et al. Soil Ecological stoichiometry under the planted of Pinus sylvestris var. mongolica forests with different stand ages in the Horqin Sandy Land [J]. Arid Zone Res, 2018, 35(4): 789 − 795.
[15]

PHILLIPS R P, FAHEY T J. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils [J]. Soil Sci Soc Am J, 2008, 72(2): 453 − 461.
[16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2005.
[17] 胡启武, 聂兰琴, 郑艳明, 等. 沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响[J]. 生态学报, 2014, 34(9): 2246 − 2255.

HU Qiwu, NIE Lanqin, ZHENG Yanming, et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in Pinus elliottii plantation [J]. Acta Ecol Sin, 2014, 34(9): 2246 − 2255.
[18] 李玉新, 赵忠, 陈金泉. 不同林龄人工沙棘林结构与林下物种多样性研究[J]. 西北植物学报, 2010, 30(4): 776 − 785.

LI Yuxin, ZHAO Zhong, CHEN Jinquan. Seabuckthorn plantation structure at different ages and its understory species diversity [J]. Acta Bot Boreal-Occident Sin, 2010, 30(4): 776 − 785.
[19] 马月婷, 张丽静, 杜明新, 等. 不同种植年限白沙蒿对根际土壤营养元素的影响[J]. 草业科学, 2014, 31(2): 224 − 231.

MA Yueting, ZHANG Lijing, DU Mingxin, et al. Effects of different ages Artemisia sphaerocephala on the content of nutrient elements in rhizosphere soil [J]. Pratacult Sci, 2014, 31(2): 224 − 231.
[20] 于德良, 雷泽勇, 赵国军, 等. 土壤酶活性对沙地樟子松人工林衰退的响应[J]. 环境化学, 2019, 38(1): 97 − 105.

YU Deliang, LEI Zeyong, ZHAO Guojun. et al. Response of soil enzyme activity to the decline of Pinus sylvestris var. mongolica plantations on sand land [J]. Environ Chem, 2019, 38(1): 97 − 105.
[21] 朱秋莲, 邢肖毅, 程曼, 等. 宁南山区典型植物根际与非根际土壤碳、氮形态[J]. 应用生态学报, 2013, 24(4): 983 − 988.

ZHU Qiulian, XING Xiaoyi, CHENG Man, et al. Concentrations of different carbon and nitrogen fractions in rhizosphere and non-rhizosphere soils of typical plant species in mountainous area of southern Ningxia, Northwest China [J]. Chin J Appl Ecol, 2013, 24(4): 983 − 988.
[22] 徐华山, 赵同谦, 贺玉晓, 等. 滨河湿地不同植被对农业非点源氮污染的控制效果[J]. 生态学报, 2010, 30(21): 5759 − 5768.

XU Huashan, ZHAO Tongqian, HE Yuxiao, et al. Effect of different vegetation types on agricultural non-point nitrogen pollution in riparian wetlands [J]. Acta Ecol Sin, 2010, 30(21): 5759 − 5768.
[23] 赵琼, 曾德慧, 于占源, 等. 沙地樟子松人工林土壤磷素转化的根际效应[J]. 应用生态学报, 2006, 17(8): 1377 − 1381.

ZHAO Qiong, ZENG Dehui, YU Zhanyuan, et al. Rhizosphere effects of Pinus sylvestris var. mongolica on soil phosphorus transformation [J]. Chin J Appl Ecol, 2006, 17(8): 1377 − 1381.
[24] 张良侠, 樊江文, 张文彦, 等. 京津风沙源治理工程对草地土壤有机碳库的影响: 以内蒙古锡林郭勒盟为例[J]. 应用生态学报, 2014, 25(2): 374 − 380.

ZHANG Liangxia, FAN Jiangwen, ZHANG Wenyan, et al. Impact of the Beijing and Tianjin Sand Source Control Project on the grassland soil organic carbon storage: a case study of Xilingol League, Inner Mongolia, China [J]. Chin J Appl Ecol, 2014, 25(2): 374 − 380.
[25] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628 − 1637.

CHENG Bin, ZHAO Yongjun, ZHANG Wenguang, et al. The research advances and prospect of ecological stoichiometry [J]. Acta Ecol Sin, 2010, 30(6): 1628 − 1637.
[26] 朱仁欢, 李玮, 郑子成, 等. 退耕植茶地土壤碳氮磷生态化学计量学特征[J]. 浙江农林大学学报, 2016, 33(4): 612 − 619.

ZHU Renhuan, LI Wei, ZHENG Zicheng, et al. Ecological stoichiometry of soil C, N, and P for returning farmland to tea plantations [J]. J Zhejiang A&F Univ, 2016, 33(4): 612 − 619.
[27] 孙超. 基于生态化学计量学的草地退化研究[D]. 长春: 吉林大学, 2012.

SUN Chao. Research on Grassland Degradation based on Ecological Stoichiometry[D]. Changchun: Jilin University, 2012.
[28] 曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51(7): 1 − 8.

CAO Juan, YAN Wende, XIANG Wenhua, et al. Stoichiometry characterization of soil C, N and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China [J]. Sci Silv Sin, 2015, 51(7): 1 − 8.