[1] ZHANG Liankai, QIN Xiaoqun, TANG Jiansheng, et al. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China [J]. Applied Geochemistry, 2017, 77: 80−88.
[2] 戈子轩, 吴同亮, 王霞, 等. 国内外土壤砷的环境标准比较[J]. 农业环境科学学报, 2024, 43(11): 2455−2471.

GE Zixuan, WU Tongliang, WANG Xia, et al. Comparison of domestic and international soil environmental standards for arsenic [J]. Journal of Agro-Environment Science, 2024, 43(11): 2455−2471.
[3]

RAJU N J. Arsenic in the geo-environment: a review of sources, geochemical processes, toxicity and removal technologies[J/OL]. Environmental Research, 2022, 203: 111782[2025-01-15]. DOI: 10.1016/j.envres.2021.111782.
[4] 潘崇双. 生物炭对砷污染土壤中青稞生长及砷积累的影响[J]. 农业与技术, 2024, 44(7): 14−19.

PAN Chongshuang. Effects of biochar on growth and arsenic accumulation of highland barley in arsenic contaminated soil [J]. Agriculture and Technology, 2024, 44(7): 14−19.
[5] 薛喜枚, 朱永官. 土壤中砷的生物转化及砷与抗生素抗性的关联[J]. 土壤学报, 2019, 56(4): 763−772.

XUE Ximei, ZHU Yongguan. Arsenic biotransformation in soils and its relationship with antibiotic resistance [J]. Acta Pedologica Sinica, 2019, 56(4): 763−772.
[6] 平森文, 朱政, 盛又聪, 等. 生物炭去除土壤中重金属效果主要影响因素的研究进展[J]. 现代农业科技, 2019(12): 153−155, 160.

PING Senwen, ZHU Zheng, SHENG Youcong, et al. Research progress on main factors affecting removal of heavy metals in soil by biochar [J]. Modern Agricultural Science and Technology, 2019(12): 153−155, 160.
[7]

YANG Xing, SHAHEEN S M, WANG Jianxu, et al. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques[J/OL]. Journal of Hazardous Materials, 2022, 422: 126808[2025-01-15]. DOI: 10.1016/j.jhazmat.2021.126808.
[8] 顾绍茹, 杨兴, 陈翰博, 等. 小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响[J]. 浙江农林大学学报, 2023, 40(1): 176−187.

GU Shaoru, YANG Xing, CHEN Hanbo, et al. Effects of biochar from Procambarus clarkii shells and Ficus microcarpa branches on soil nutrients and bioavailability of Cd and Pb [J]. Journal of Zhejiang A&F University, 2023, 40(1): 176−187.
[9]

YANG Xing, HINZMANN M, PAN He, et al. Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions[J/OL]. Journal of Hazardous Materials, 2022, 421: 126647[2025-01-15]. DOI: 10.1016/j.jhazmat.2021.126647.
[10] 张倩茹, 冀琳宇, 高程程, 等. 改性生物炭的制备及其在环境修复中的应用[J]. 农业环境科学学报, 2021, 40(5): 913−925.

ZHANG Qianru, JI Linyu, GAO Chengcheng, et al. Preparation of modified biochar and its application in environmental remediation [J]. Journal of Agro-Environment Science, 2021, 40(5): 913−925.
[11]

BAKSHI S, BANIK C, RATHKE S J, et al. Arsenic sorption on zero-valent iron-biochar complexes [J]. Water Research, 2018, 137: 153−163.
[12]

ZHANG Feng, WANG Xin, JI Xionghui, et al. Efficient arsenate removal by magnetite-modified water hyacinth biochar [J]. Environmental Pollution, 2016, 216: 575−583.
[13] 樊建新, 秦亮, 段婷, 等. Fe3O4改性生物质炭对As的吸附特征研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 111−118.

FAN Jianxin, QIN Liang, DUAN Ting, et al. Sorption characteristics of Fe3O4 modified biochar on arsenic [J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(10): 111−118.
[14] 戴志楠, 温尔刚, 陈翰博, 等. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 2021, 38(2): 346−354.

DAI Zhinan, WEN Ergang, CHEN Hanbo, et al. Effect of raw and iron-modified biochar on the sorption of As(Ⅴ) by soils [J]. Journal of Zhejiang A&F University, 2021, 38(2): 346−354.
[15] 王戈慧. 硫铁改性生物炭同步修复土壤砷铅污染的稳定化效果及作用机制[D]. 上海: 华东理工大学, 2022.

WANG Gehui. Simultaneous Immobilization and Mechanisms of Arsenic and Lead in Soils by Sulfur/iron Modified Biochar[D]. Shanghai: East China University of Science and Technology, 2022.
[16] 陈延强. 聚合硫酸铁的制备工艺优化及其在水处理中的应用效果研究[J]. 化纤与纺织技术, 2024, 53(10): 92−94.

CHEN Yanqiang. Optimization of preparation process of polymeric ferric sulfate and its application effect in water treatment [J]. Chemical Fiber & Textile Technology, 2024, 53(10): 92−94.
[17] 王晓霞, 杨涛, 肖璐睿, 等. 稻草秸秆生物质炭对重金属Cd2+的吸附性能研究[J]. 环境科学学报, 2021, 41(7): 2691−2699.

WANG Xiaoxia, YANG Tao, XIAO Lurui, et al. Study on the adsorption performance of rice straw biomass charcoal to heavy metal Cd2+ [J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2691−2699.
[18] 马林峰, 欧爱彤, 李志远, 等. Na2S改性生物炭高效吸附重金属离子: 制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594−2603.

MA Linfeng, OU Aitong, LI Zhiyuan, et al. High-efficiency adsorption of heavy metal ions by Na2S modified biochar: preparation and adsorption mechanism [J]. CIESC Journal, 2024, 75(7): 2594−2603.
[19]

DEBORD J, HAREL M, BOLLINGER J-C, et al. The Elovich isotherm equation: back to the roots and new developments[J/OL]. Chemical Engineering Science, 2022, 262: 118012[2025-01-15]. DOI: 10.1016/j.ces.2022.118012.
[20]

SALVESTRINI S, IOVINO P, CAPASSO S. Comments on “Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution” [J]. Chemical Physics, 2019, 517: 270−271.
[21]

VIGDOROWITSCH M, PCHELINTSEV A, TSYGANKOVA L, et al. Freundlich isotherm: an adsorption model complete framework[J/OL]. Applied Sciences-Basel, 2021, 11(17): 8078[2025-01-15]. DOI: 10.3390/app11178078.
[22]

PENG Hongbo, GAO Peng, CHU Gang, et al. Enhanced adsorption of Cu(Ⅱ) and Cd(Ⅱ) by phosphoric acid-modified biochars [J]. Environmental Pollution, 2017, 229: 846−853.
[23]

ZHOU Yaoyu, LIU Xiaocheng, XIANG Yujia, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling [J]. Bioresource Technology, 2017, 245: 266−273.
[24]

PARK J H, WANG J J, KIM S H, et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures [J]. Journal of Colloid and Interface Science, 2019, 553: 298−307.
[25] 胡志新, 时萌, 孙菁, 等. 改性芦苇生物质炭对水中硝态氮的吸附特性[J]. 江苏农业科学, 2018, 46(24): 359−362.

HU Zhixin, SHI Meng, SUN Jing, et al. Adsorption characteristics of modified reed biomass carbon for nitrate nitrogen in water [J]. Jiangsu Agricultural Sciences, 2018, 46(24): 359−362.
[26] 计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11): 2281−2287.

JI Haiyang, WANG Yuying, LIU Yuxue, et al. Advance in preparation and application of biochar and modified biochar research [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2281−2287.
[27] 李蕊宁, 王兆炜, 郭家磊, 等. 酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J]. 环境科学学报, 2017, 37(11): 4119−4128.

LI Ruining, WANG Zhaowei, GUO Jialei, et al. Adsorption characteristics of sulfathiazole in aqueous solution by acid/alkali modified biochars [J]. Acta Scientiae Circumstantiae, 2017, 37(11): 4119−4128.
[28] 彭章, 龚香宜, 熊武芳, 等. 改性生物炭对萘的吸附效果与机理[J]. 生态与农村环境学报, 2021, 37(8): 1080−1088.

PENG Zhang, GONG Xiangyi, XIONG Wufang, et al. Effect and the mechanism of modified biochar on adsorption of naphthalene [J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1080−1088.
[29] 杨兴, 黄化刚, 王玲, 等. 烟秆生物质炭热解温度优化及理化性质分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 245−255.

YANG Xing, HUANG Huagang, WANG Ling, et al. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 245−255.
[30] 郭莹娟, 薛娟琴, 张桀, 等. 质子化改性壳聚糖吸附硫酸根行为及其光谱分析[J]. 光谱学与光谱分析, 2014, 34(1): 78−81.

GUO Yingjuan, XUE Juanqin, ZHANG Jie, et al. Adsorption behaviors of protonation modified chitosan and the analysis of spectra [J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 78−81.
[31]

NGOC Q B V, CHOI M S, KIM W J. A simple quantitative estimate of the number of functional groups on the surfaces of single-walled carbon nanotubes [J]. RSC Advances, 2016, 6(8): 6451−6458.
[32] 孙建财, 周丹丹, 王薇, 等. 生物炭改性及其对污染物吸附与降解行为的研究进展[J]. 环境化学, 2021, 40(5): 1503−1513.

SUN Jiancai, ZHOU Dandan, WANG Wei, et al. Research progress on modification of biochar and its adsorption and degradation behavior [J]. Environmental Chemistry, 2021, 40(5): 1503−1513.
[33]

BIAN Hao, WAN Jiang, MUHAMMAD T, et al. Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(Ⅵ) stabilization in soil: kinetics and response surface methodology (RSM)[J/OL]. Environmental Pollution, 2021, 276: 116745[2025-01-15]. DOI: 10.1016/j.envpol.2021.116745.
[34]

YANG Dong, WANG Lu, LI Zhangtao, et al. Simultaneous adsorption of Cd(Ⅱ) and As(Ⅲ) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J/OL]. Science of the Total Environment, 2020, 708: 134823[2025-01-15]. DOI: 10.1016/j.scitotenv.2019.134823.
[35]

LIAN Fei, SONG Zhengguo, LIU Zhongqi, et al. Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH [J]. Environmental Pollution, 2013, 178: 264−270.
[36] 李坤权, 王艳锦, 杨美蓉, 等. 多胺功能化介孔炭对Pb(Ⅱ)的吸附动力学与机制[J]. 环境科学, 2014, 35(8): 3198−3205.

LI Kunquan, WANG Yanjin, YANG Meirong, et al. Adsorption kinetics and mechanism of lead(Ⅱ) on polyamine-functionalized mesoporous activated carbon [J]. Environmental Science, 2014, 35(8): 3198−3205.
[37]

KATIYAR R, PATEL A K, NGUYEN T B, et al. Adsorption of copper (Ⅱ) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed[J/OL]. Bioresource Technology, 2021, 328: 124829[2025-01-15]. DOI: 10.1016/j.biortech.2021.124829.
[38] 张苏明, 张建强, 周凯, 等. 铁基改性椰壳生物炭对砷的吸附效果及机制研究[J]. 生态环境学报, 2021, 30(7): 1503−1512.

ZHANG Suming, ZHANG Jianqiang, ZHOU Kai, et al. Adsorption effect and mechanism of iron-based modified coconut shell biochar to arsenic [J]. Ecology and Environmental Sciences, 2021, 30(7): 1503−1512.
[39] 贾田, 吴道明, 蔡景行, 等. 废弃农用地膜与辣椒秸秆共混热解制备生物炭及其对含Cd(Ⅱ)废水的处理[J]. 广东化工, 2024, 51(13): 8−11.

JIA Tian, WU Daoming, CAI Jinghang, et al. Preparation of biochar from co-pyrolysis of waste mulching film and chili straw and its treatment capability toward Cd(Ⅱ)-containing wastewater [J]. Guangdong Chemical Industry, 2024, 51(13): 8−11.
[40]

JUNG K W, HWANG M J, JEONG T U, et al. A novel approach for preparation of modified-biochar derived from marine macroalgae: dual purpose electro-modification for improvement of surface area and metal impregnation [J]. Bioresource Technology, 2015, 191: 342−345.
[41]

MAKRESKI P, STEFOV S, PEJOV L, et al. Theoretical and experimental study of the vibrational spectra of (para) symplesite and hörnesite [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 144: 155−162.
[42]

OUMA I L A, NAIDOO E B, OFOMAJA A E. Thermodynamic, kinetic and spectroscopic investigation of arsenite adsorption mechanism on pine cone-magnetite composite [J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5409−5419.
[43]

WU Jizi, HUANG Dan, LIU Xingmei, et al. Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar [J]. Journal of Hazardous Materials, 2018, 348: 10−19.
[44] 熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909−1918.

XIONG Jing, GUO Lili, LI Shupeng, et al. Optimizing the formulation and stabilization effects of an amendment for cadmium and arsenic contaminated soil [J]. Journal of Agro-Environment Science, 2019, 38(8): 1909−1918.
[45]

HUANG Yifan, GAO Minling, DENG Yingxuan, et al. Efficient oxidation and adsorption of As(Ⅲ) and As(Ⅴ) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar[J/OL]. Science of The Total Environment, 2020, 715: 136957[2025-01-15]. DOI: 10.1016/j.scitotenv.2020.136957.
[46]

ZHANG Shujuan, LI Xiaoyan, CHEN J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber [J]. Journal of Colloid and Interface Science, 2010, 343(1): 232−238.
[47]

FRAU F, ADDARI D, ATZEI D, et al. Influence of major anions on As(Ⅴ) adsorption by synthetic 2-line ferrihydrite. kinetic investigation and XPS study of the competitive effect of bicarbonate [J]. Water, Air, and Soil Pollution, 2010, 205(1/4): 25−41.
[48]

KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals [J]. Environmental Science & Technology Letters, 2014, 1(8): 339−344.
[49]

QIN Yaxin, ZHANG Lizhi, AN Taicheng. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(Ⅲ) [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17116−17125.
[50]

XU Xiaoyun, HUANG Huang, ZHANG Yue, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(Ⅵ) during its sorption [J]. Environmental Pollution, 2019, 244: 423−430.