[1] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J]. For Ecol Manage, 2010, 259(4): 660 − 684.
[2] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought [J]. Nature, 2012, 491(7426): 752 − 755.
[3] ANDEREGG W R L, SCHWALM C, BIONDI F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models [J]. Science, 2015, 349(6247): 528 − 532.
[4] SCHWALM C R, ANDEREGG W R L, MICHALAK A M, et al. Global patterns of drought recovery [J]. Nature, 2017, 548(7666): 202 − 205.
[5] ANDEREGG W R L, KLEIN T, BARTLETT M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe [J]. Proc Natl Acad Sci, 2016, 113(18): 5024 − 5029.
[6] GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species [J]. New Phytol, 2016, 209(1): 123 − 136.
[7] NOLF M, PAGITZ K, MAYR S. Physiological acclimation to drought stress in Solidago canadensis [J]. Physiol Plant, 2014, 150(4): 529 − 539.
[8] SKELTON R P, DAWSON T E, THOMPSON S E, et al. Low vulnerability to xylem embolism in leaves and stems of north American oaks [J]. Plant Physiol, 2018, 177(3): 1066 − 1077.
[9] SKELTON R P, WEST A G, DAWSON T E. Predicting plant vulnerability to drought in biodiverse regions using functional traits [J]. Proc Natl Acad Sci U S A, 2015, 112(18): 5744 − 5749.
[10] MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? [J]. New Phytol, 2008, 178(4): 719 − 739.
[11] SPERRY J S, MEINZER F C, MCCULLOH K A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees [J]. Plant Cell Environ, 2008, 31(5): 632 − 645.
[12] CORNWELL W K, CORNELISSEN J H C, ALLISON S D, et al. Plant traits and wood fates across the globe: rotted, burned, or consumed? [J]. Global Change Biol, 2009, 15(10): 2431 − 2449.
[13] SPERRY J S. Evolution of water transport and xylem structure [J]. Int J Plant Sci, 2003, 164(3): S115 − S127.
[14] HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure [J]. Oecologia, 2001, 126(4): 457 − 461.
[15] TYREE M, ZIMMERMANN M. Xylem Structure and the Ascent of Sap[M]. New York: Springer-Verlag, 2002.
[16] MCCULLOH K A, SPERRY J S, ADLER F R. Murray’s law and the hydraulic vs mechanical functioning of wood [J]. Funct Ecol, 2004, 18(6): 931 − 938.
[17] BLACKMAN C J, GLEASON S M, CHANG Y, et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates [J]. Ann Bot, 2014, 114(3): 435 − 440.
[18] 陈志成, 姜丽娜, 冯锦霞, 等. 木本植物木质部栓塞测定技术的争议与进展[J]. 林业科学, 2018, 54(5): 143 − 151.

CHEN Zhicheng, JIANG Lina, FENG Jinxia, et al. Progress and controversy of xylem embolism determination techniques in woody plants [J]. Sci Silv Sin, 2018, 54(5): 143 − 151.
[19]

SCHUMANN K, LEUSCHNER C, SCHULDT B. Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences [J]. Trees, 2019, 33(5): 1475 − 1490.
[20]

SCHULDT B, KNUTZEN F, DELZON S, et al. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? [J]. New Phytol, 2016, 210(2): 443 − 458.
[21]

PRATT R B, JACOBSEN A L, GOLGOTIU K A, et al. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae) [J]. Ecol Monographs, 2007, 77(2): 239 − 253.
[22]

LEWIS A M, BOOSE E R. Estimating volume flow rates through xylem conduits [J]. Am J Bot, 1995, 82(9): 1112 − 1116.
[23]

PRATT R B, JACOBSEN A L, EWERS F W, et al. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral [J]. New Phytol, 2007, 174(4): 787 − 798.
[24]

HACKE U G, SPERRY J S, PITTERMANN J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah [J]. Basic Appl Ecol, 2000, 1(1): 31 − 41.
[25]

MAHERALI H, DELUCIA E H. Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates [J]. Tree Physiol, 2000, 20(13): 859 − 867.
[26]

MAHERALI H, POCKMAN W T, JACKSON R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation [J]. Ecology, 2004, 85(8): 2184 − 2199.
[27]

MARTÍNEZ-VILALTA J, PRAT E, OLIVERAS I, et al. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species [J]. Oecologia, 2002, 133(1): 19 − 29.
[28]

LARTER M, PFAUTSCH S, DOMEC J C, et al. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris [J]. New Phytol, 2017, 215(1): 97 − 112.
[29]

HAJEK P, KURJAK D, von WÜHLISCH G, et al. Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield[J/OL]. Front Plant Sci, 2016, 7: 791[2021-12-20]. doi: 10.3389/fpls.2016.00791.
[30]

CORNWELL W K, BHASKAR R, SACK L, et al. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation [J]. Funct Ecol, 2007, 21(6): 1063 − 1071.
[31]

SÁENZ-ROMERO C, LAMY J B, LOYA-REBOLLAR E, et al. Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient [J]. Acta Physiol Plant, 2013, 35(10): 2905 − 2913.
[32]

JACOBSEN A L, PRATT R B, DAVIS S D, et al. Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities [J]. Plant Cell Environ, 2007, 30(12): 1599 − 1609.
[33]

MARTíNEZ-VILALTA J, COCHARD H, MENCUCCINI M, et al. Hydraulic adjustment of scots pine across Europe [J]. New Phytol, 2009, 184(2): 353 − 364.
[34]

GLEASON S M, BUTLER D W, WARYSZAK P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia [J]. Int J Plant Sci, 2013, 174(9): 1292 − 1301.
[35]

PRATT R B, JACOBSEN A L. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics [J]. Plant Cell Environ, 2017, 40(6): 897 − 913.
[36]

BRODRIBB T J, MCADAM S A M, JORDAN G J, et al. Conifer species adapt to low-rainfall climates by following one of two divergent pathways [J]. Proc Natl Acad Sci U S A, 2014, 111(40): 14489 − 14493.
[37]

NEGIN B, MOSHELION M. The evolution of the role of ABA in the regulation of water-use efficiency: from biochemical mechanisms to stomatal conductance [J]. Plant Sci, 2016, 251: 82 − 89.
[38]

POORTER L, MCDONALD I, ALARCÓN A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species [J]. New Phytol, 2010, 185(2): 481 − 492.
[39]

KERN K A, EWERS F W, TELEWSKI F W, et al. Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars [J]. Tree Physiol, 2005, 25(10): 1243 − 1251.
[40]

PITTERMANN J, SPERRY J S, HACKE U G, et al. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection [J]. Am J Bot, 2006, 93(9): 1265 − 1273.
[41]

PITTERMANN J, SPERRY J S, WHEELER J K, et al. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem [J]. Plant Cell Environ, 2006, 29(8): 1618 − 1628.
[42]

PITTERMANN J, SPERRY J S, HACKE U G, et al. Torus-margo pits help conifers compete with angiosperms [J]. Science, 2005, 310(5756): 1924 − 1924.
[43]

ZANNE A E, WESTOBY M, FALSTER D S, et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity [J]. Am J Bot, 2010, 97(2): 207 − 215.