[1] |
CHEN Zhen, JIANG Jingyong, LI Xiaobai, et al. Bioactive compounds and fruit quality of Chinese raspberry, Rubus chingii Hu varied with genotype and phenological phase[J/OL]. Scientia Horticulturae, 2021, 281 : 109951[2024-05-26]. DOI: 10.1016/j.scienta.2021.109951. |
[2] |
MENG Qinglin, MANGHWAR H, HU Weiming. Study on Supergenus Rubus L.: edible, medicinal, and phylogenetic characterization[J/OL]. Plants, 2022, 11 (9): 1211[2024-05-26]. DOI: 10.3390/plants11091211. |
[3] |
SHENG Jiayun, WANG Siqi, LIU Kaohua, et al. Rubus chingii Hu: an overview of botany, traditional uses, phytochemistry, and pharmacology[J]. Chinese Journal of Natural Medicines, 2020, 18 (6): 401−416. |
[4] |
国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020: 399.
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China[M]. Beijing: China Medical Science Press, 2020: 399. |
[5] |
YU Guohua, LUO Zhiqiang, WANG Wubin, et al. Rubus chingii Hu: a review of the phytochemistry and pharmacology [J/OL]. Frontiers in Pharmacology, 2019, 10 : 799[2024-05-26]. DOI: 10.3389/fphar.2019.00799. |
[6] |
CHEN Zhen, JIANG Jingyong, SHU Liangzuo, et al. Combined transcriptomic and metabolic analyses reveal potential mechanism for fruit development and quality control of Chinese raspberry (Rubus chingii Hu)[J]. Plant Cell Reports, 2021, 40: 1923−1946. |
[7] |
HUA Yujiao, DAI Bingyi, LUO Yiyuan, et al. Integrated analysis of multiple metabolome and transcriptome revealed the accumulation of flavonoids and associated molecular regulation mechanisms in Rubus chingii Hu at different developmental stages[J/OL]. Plant Physiology and Biochemistry, 2023, 204 : 108085[2024-05-26]. DOI: 10.1016/j.plaphy.2023.108085. |
[8] |
WU Mengjun, LYU Yuxin, XU Hangying, et al. Raspberry polysaccharides attenuate hepatic inflammation and oxidative stress in diet-induced obese mice by enhancing butyrate-mediated intestinal barrier function[J/OL]. International Journal of Biological Macromolecules, 2024, 262 : 130007[2024-05-26]. DOI: 10.1016/j.ijbiomac.2024.130007. |
[9] |
ADAMCZUK N, OŚKO J, GREMBECKA M, et al. Evaluation of the content of micro- and macroelements in raspberries depending on the species, cultivar variety, and geographical environment[J/OL]. Nutrients, 2023, 15 (17): 3782[2024-05-26]. DOI: 10.3390/nu15173782. |
[10] |
GONZÁLEZ-CARRANZA Z H, ELLIOTT K A, ROBERTS J A. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2007, 58(13): 3719−3730. |
[11] |
YU Youjian, LIANG Ying, LÜ Meiling, et al. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus [J]. [J]. Plant Physiology and Biochemistry, 2014, 74: 263−275. |
[12] |
KE Xubo, WANG Huasen, LI Yang, et al. Genome-wide identification and analysis of polygalacturonase genes in Solanum lycopersicum[J/OL]. International Journal of Molecular Sciences, 2018, 19 (8): 2290[2024-05-26]. DOI: 10.3390/ijms19082290. |
[13] |
LU Lu, HOU Quancan, WANG Linlin, et al. Genome-wide identification and characterization of polygalacturonase gene family in maize (Zea mays L. )[J/OL]. International Journal of Molecular Sciences, 2021, 22(19): 10722[2024-05-26]. DOI: 10.3390/ijms221910722. |
[14] |
HE Peiwen, ZHANG Jingzhen, LÜ Zunfu, et al. Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato[J/OL]. BMC Plant Biology, 2023, 23 : 300[2024-05-26]. DOI: 10.1186/s12870-023-04272-1. |
[15] |
PARK K C, KWON S J, KIM P H, et al. Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus[J]. Genome, 2008, 51(1): 30−40. |
[16] |
LIANG Ying, YU Youjian, CUI Jinlong, et al. A comparative analysis of the evolution, expression, and cis-regulatory element of polygalacturonase genes in grasses and dicots[J]. Functional & Integrative Genomics, 2016, 16(6): 641−656. |
[17] |
KIM J, SHIU S H, THOMA S, et al. Patterns of expansion and expression divergence in the plant polygalacturonase gene family[J/OL]. Genome Biology, 2006, 7 (9): R87[2024-05-26]. DOI: 10.1186/gb-2006-7-9-r87. |
[18] |
MAHMOOD U, FAN Yonghai, WEI Siyu, et al. Comprehensive analysis of polygalacturonase genes offers new insights into their origin and functional evolution in land plants[J]. Genomics, 2021, 113(1): 1096−1108. |
[19] |
WANG Longji, LEI Ting, HAN Guomin, et al. The chromosome-scale reference genome of Rubus chingii Hu provides insight into the biosynthetic pathway of hydrolyzable tannins[J]. The Plant Journal, 2021, 107: 1466−1477. |
[20] |
CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13: 1194−1202. |
[21] |
QIAN Ming, ZHANG Yike, YAN Xiangyan, et al. Identification and expression analysis of polygalacturonase family members during peach fruit softening[J/OL]. International Journal of Molecular Sciences, 2016, 17 (11): 1933[2024-05-26]. DOI: 10.3390/ijms17111933. |
[22] |
WANG Yuan, FAN Zhiyi, ZHAI Yanlei, et al. Polygalacturonase gene family analysis identifies FcPG12 as a key player in fig (Ficus carica L. ) fruit softening[J/OL]. BMC Plant Biology, 2023, 23 (1): 320[2024-05-26]. DOI: 10.1186/s12870-023-04315-7. |
[23] |
MARKOVIC O, JANECEK S. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution[J]. Protein Engineering, 2001, 14(9): 615−631. |
[24] |
齐勇, 韩秀梅, 宋莎, 等. “落别”樱桃果实不同发育期糖酸组分积累及软化相关成分研究[J]. 食品工业科技, 2021, 42(21): 344−352.
QI Yong, HAN Xiumei, SONG Sha, et al. Study on accumulation of sugar and acid components and softening related components of “Luobie” cherry fruit in the different development stages[J]. Science and Technology of Food Industry, 2021, 42(21): 344−352. |
[25] |
SEKINE D, MUNEMURA I, GAO Mei, et al. Cloning of cDNAs encoding cell-wall hydrolases from pear (Pyrus communis) fruit and their involvement in fruit softening and development of melting texture[J]. Physiologia Plantarum, 2006, 126(2): 163−174. |
[26] |
ATKINSON R G, SCHRÖDER R, HALLETT I C, et al. Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion[J]. Plant Physiology, 2002, 129(1): 122−133. |
[27] |
SITRIT Y, BENNETT A B. Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: a re-examination[J]. Plant Physiology, 1998, 116(3): 1145−1150. |
[28] |
LI Tiemei, GUO Xiao, CHEN Yuxiao, et al. Overexpression of the Rubus idaeus polygalacturonases gene RiPG2 accelerates fruit softening in Solanum lycopersicum[J/OL]. Agronomy, 2024, 14 (1): 160[2024-05-26]. DOI: 10.3390/agronomy14010160. |
[29] |
REN Yibo, LI Baijun, JIA Haoran, et al. Comparative analysis of fruit firmness and genes associated with cell wall metabolisms in three cultivated strawberries during ripening and postharvest[J/OL]. Food Quality and Safety, 2023, 7 : fyad020[2024-05-26]. DOI: 10.1093/fqsafe/fyad020. |
[30] |
曾燕如, SRIVASTAVA G C, PANDEY M, 等. 硼酸处理对Sensatiou芒果成熟的影响[J]. 浙江林学院学报, 1996, 13(3): 263−269.
ZENG Yanru, SRIVASTAVA G C, PANDEY M, et al. Effect of borie acid treatment on the ripening of mango (Mangifera indica) cv. Sensation[J]. Journal of Zhejiang Forestry College, 1996, 13(3): 263−269. |
[31] |
陈迪飞, 魏秀清, 许玲, 等. 莲雾PG基因家族全基因组鉴定及表达分析[J]. 果树学报, 2022, 39(4): 548−563.
CHEN Difei, WEI Xiuqing, XU Ling, et al. Genome-wide identification and expression analysis of PG gene family in wax apple [Syzygium samarangense (Bl. ) Merr. et Perry][J]. Journal of Fruit Science, 2022, 39(4): 548−563. |
[32] |
霍如雪, 刘振宁, 杨青, 等. 桃PG基因家族的鉴定与分析[J]. 江苏农业科学, 2016, 44(6): 33−40.
HUO Ruxue, LIU Zhenning, YANG Qing, et al. Identification and analysis of PG gene family in peach[J]. Jiangsu Agricultural Sciences, 2016, 44(6): 33−40. |