[1] 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1 − 11.

GUO Jianping. Advances in impacts of climate change on agricultural production in China [J]. J Appl Meteorol Sci, 2015, 26(1): 1 − 11.
[2]

KOTAK S, LARKINDALE J, LEE U, et al. Complexity of the heat stress response in plants [J]. Curr Opin Plant Biol, 2007, 10(3): 310 − 316.
[3] 许蓝心, 田如男. 观赏植物耐热性研究进展[J]. 亚热带植物科学, 2019, 48(1): 96 − 102.

XU Lanxin, TIAN Runan. Advances in research on ornamental plant heat tolerance [J]. Subtrop Plant Sci, 2019, 48(1): 96 − 102.
[4] 郝召君, 周春华, 刘定, 等. 高温胁迫对芍药光合作用、叶绿素荧光特性及超微结构的影响[J]. 分子植物育种, 2017, 15(6): 2359 − 2367.

HAO Zhaojun, ZHOU Chunhua, LIU Ding, et al. Effects of high temperature stress on photosynthesi, chlorophyll fluorescence and ultrastructure of herbaceous peony (Paeonia lactiflora Pall.) [J]. Mol Plant Breed, 2017, 15(6): 2359 − 2367.
[5] 骆俊, 韩金蓉, 王艳, 等. 高温胁迫下牡丹的抗逆生理响应[J]. 长江大学学报(自然科学版), 2011, 8(2): 223 − 226, 287 − 288.

LUO Jun, HAN Jinrong, WANG Yan, et al. Response of heat stress on the physiological biochemistry of Paeonia suffruticosa [J]. J Yangtze Univ Nat Sci Ed, 2011, 8(2): 223 − 226, 287 − 288.
[6] 彭勇政, 刘智媛, 朱晓非, 等. 5个月季品种高温处理后生理指标变化及其耐热性评价[J]. 上海交通大学学报(农业科学版), 2019, 37(5): 53 − 58.

PENG Yongzheng, LIU Zhiyuan, ZHU Xiaofei, et al. Physiological index changes and heat tolerance evaluation of five rose cultivars after high temperature treatment [J]. J Shanghai Jiaotong Univ Agric Sci, 2019, 37(5): 53 − 58.
[7] 李永华, 孙丽丹, 苏志国, 等. 短期高温对牡丹叶片光合作用及相关生理指标的影响[J]. 河南科学, 2008, 26(3): 291 − 293.

LI Yonghua, SUN Lidan, SU Zhiguo, et al. Effects of short-term high temperature on photosynthesis and related physiological indices in the leaves of Paeonia suffruticosa [J]. Henan Sci, 2008, 26(3): 291 − 293.
[8] 骞光耀, 孔祥生, 张淑玲. 3个牡丹品种对高温胁迫的生理响应[J]. 江苏农业科学, 2017, 45(12): 103 − 105.

QIAN Guangyao, KONG Xiangsheng, ZHANG Shuling. Physiological response of three Paeonia suffruticosa varieties to high temperature stress [J]. Jiangsu Agric Sci, 2017, 45(12): 103 − 105.
[9] 贾琪, 吴名耀, 梁康迳, 等. 基因组学在作物抗逆性研究中的新进展[J]. 中国生态农业学报, 2014, 22(4): 375 − 385.

JIA Qi, WU Mingyao, LIANG Kangjing, et al. Advances in applications of genomics in stress resistance studies of crops [J]. Chin J Eco-Agric, 2014, 22(4): 375 − 385.
[10] 祝小云. 切花非洲菊苗期在高温胁迫中的生理生化响应和转录组分析[D]. 杭州: 浙江农林大学, 2016.

ZHU Xiaoyun. Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress and Transcriptome Analysis[D]. Hangzhou: Zhejiang A&F University, 2016.
[11]

LI Yongfang, WANG Yixing, TANG Yuhong, et al. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.) [J]. BMC Plant Biol, 2013, 13(1): 153 − 164.
[12]

WANG Wangxia, VINOCUR B, SHOSEYOY O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends Plant Sci, 2004, 9(5): 244 − 252.
[13]

OHAMA N, SATO H, SHINOZAKI K, et al. Transcriptional regulatory network of plant heat stress response [J]. Trends Plant Sci, 2017, 22(1): 53 − 65.
[14] BUCHANAN B B, GRUISSEM W, JONES R L. 等. 植物生物化学与分子生物学 (2004)[M]. 瞿礼嘉, 顾红雅, 白书农, 等译. 北京: 科学出版社, 2004.
[15]

LIU Liang, CHEN Jiyun, YANG Bo, et al. Crystal structure and function of an unusual dimericHsp20.1 provide insight into the thermal protection mechanism of small heat shock proteins [J]. Biochem Biophys Res Commun, 2015, 458(2): 429 − 434.
[16]

HU Xiuli, YANG Yanfang, GONG Fangping, et al. Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays) [J]. J Proteomics, 2014, 115: 81 − 92.
[17]

GAO Lulu, MA Yuzhu, WANG Peng, et al. Transcriptome profiling of clematis apiifolia: insights into heat-stress responses [J]. DNA Cell Biol, 2017, 36(11).
[18] 王莲英. 中国牡丹品种图志[M]. 北京: 中国林业出版社, 1997: 2−28.
[19] 史倩倩. 基于转录组测序滇牡丹花色形成分子调控机理研究[D]. 北京: 中国林业科学研究院, 2015.

SHI Qianqian. Studies on the Molecular Mechanism of Paeonia delavayi Flower Color Formation[D]. Beijing: Chinese Academy of Forestry, 2015.
[20] 张庆雨, 于蕊, 谢力行, 等. 牡丹种子脂肪酸合成相关基因PrLPAAT4的克隆与表达分析[C]//中国园艺学会观赏园艺专业委员会、国家花卉工程技术研究中心. 中国观赏园艺研究进展(2018). 北京: 中国林业出版社, 2018: 502 − 511.
[21] 郑艳伟. 江南牡丹品种资源调查与引种栽培研究[D]. 杭州: 浙江农林大学, 2009.

ZHENG Yanwei. The Study on the Investigation of Tree Peony Varieties and Its Introduction Cultivation in the South Yangtse River of China[D]. Hangzhou: Zhejiang A&F University, 2009.
[22] 张佳平, 李丹青, 聂晶晶, 等. 高温胁迫下芍药的生理生化响应和耐热性评价[J]. 核农学报, 2016, 30(9): 1848 − 1856.

ZHANG Jiaping, LI Danqing, NIE Jingjng, et al. Physiological and biochemical responses to the high temperature stress and heat resistance evaluation of Paeonia lactiflora Pall. cultivars [J]. J Nucl Agric Sci, 2016, 30(9): 1848 − 1856.
[23]

MALONE J H, OLIVER B C. Microarrays, deep sequencing and the true measure of the transcriptome[J]. BMC Biol, 2011, 9(1): 34. doi: 10.1186/1741-7007-9-34.
[24]

PATEL R K, MUKESH J. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data[J]. PLoS One, 2012, 7(2): e30619. doi: 10.1371/journal.pone.0030619.
[25]

TRAPNELL C, HENDRIEKSON D G, SAUVAGEAU M, et al. Differential analysis of gene regulation at transcript resolution with RNA-seq [J]. Nat Biotechnol, 2013, 3l (1): 46 − 53.
[26]

LIVAK K J, LIVAK SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402 − 408.
[27]

ARYA M, SHERGILL I S, WILLIAMSON M, et al. Basic principles of real-time quantitative PCR [J]. Expert Rev Mol Diagn, 2005, 5 (2): 209 − 219.
[28] 马月萍, 戴思兰, 马艳蓉. 荧光定量PCR技术在植物研究中的应用[J]. 生物技术通报, 2011(7): 37 − 45.

MA Yueping, DAI Silan, MA Yanrong. Application of technique of quantitative real-time PCR in research of lants [J]. Biotechnol Bull, 2011(7): 37 − 45.
[29] 王彦杰, 董丽, 张超, 等. 牡丹实时定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 2012, 20(5): 521 − 528.

WANG Yanjie, DONG Li, ZHANG Chao, et al. Reference gene selection for real-time quantitative PCR normalization in tree peony (Paeonia suffruticosa Andr.) [J]. J Agric Biotechnol, 2012, 20(5): 521 − 528.
[30]

WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview [J]. Environ Exp Bot, 2007, 61(3): 199 − 223.
[31]

YIN Hui, CHEN Qiuming, YI Mingfang. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum [J]. Plant Growth Regul, 2008, 54(1): 45 − 54.
[32]

ZHAO Daqiu, XIA Xing, SU Jianghong, et al. Overexpression of herbaceous peony HSP70 confers high temperature tolerance[J]. BMC Genomics, 2019, 20(1): 70. doi: 10.1186/s12864-019-5448-0.
[33] 宫本贺. 百合热激转录因子L1HSFA1及其下游热激蛋白L1HSP70响应热胁迫的机制解析[D]. 北京: 中国农业大学, 2014.

GONG Benhe. Mechanism Analysis of Response to Heat Stress of LIHSFA1 and its Downstream LIHSP70 from Lily(Lilium longiflorum)[D]. Beijing: China Agricultural University, 2014.
[34]

SOO M P, CHOO B H. Class Ⅰ small heat-shock protein gives thermotolerance in tobacco [J]. J Plant Physiol, 2002, 159(1): 25 − 30.