[1] ZHU Peng, FENG Luyao, DING Zejun, et al. Preparation of spherical cellulose nanocrystals from microcrystalline cellulose by mixed acid hydrolysis with different pretreatment routes[J]. International Journal of Molecular Sciences, 2022, 23(18): 10764. DOI: 10.3390/ijms231810764.
[2] ZHANG Qihong, LU Zhaohui, SU Chen, et al. High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent[J]. Bioresource Technology, 2021, 331: 125015. DOI: 10.1016/j.biortech.2021.125015.
[3] 王释玉, 李海明. CNC手性向列型液晶结构的形成、调控与应用[J]. 大连工业大学学报, 2022, 41(4): 261−268. WANG Shiyu, LI Haiming. Formation, tuning and application of cellulose nanocrystal with chiral nematic liquid crystal structure[J]. Journal of Dalian Polytechnic University, 2022, 41(4): 261−268. DOI: 10.19670/j.cnki.dlgydxxb.2022.6001.

WANG Shiyu, LI Haiming. Formation, tuning and application of cellulose nanocrystal with chiral nematic liquid crystal structure[J]. Journal of Dalian Polytechnic University, 2022, 41(4): 261−268. DOI: 10.19670/j.cnki.dlgydxxb.2022.6001.
[4]

MOUD A A, MOUD A A. Flow and assembly of cellulose nanocrystals (CNC): a bottom-up perspective-a review[J]. International Journal of Biological Macromolecules, 2023, 232: 123391. DOI: 10.1016/j.ijbiomac.2023.123391.
[5]

WANG Peixi, MACLACHLAN M J. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2112): 20170042. DOI:10.1098/rsta.2017.0042.
[6]

ZHANG Fusheng, YU Jiaqi, ZHONG Wei, et al. Responsive photonic filaments from confined self-assembly of cellulose nanocrystals[J]. ACS Nano, 2025, 19(6): 6299−6308. DOI: 10.1021/acsnano.4c15863.
[7] 平欣鑫, 徐华炜, 董涵琦, 等. 纤维素纳米晶体手性向列材料研究进展[J]. 中国造纸, 2024, 43(7): 135−140, 83. PING Xinxin, XU Huawei, DONG Hanqi, et al. Research progress of cellulose nanocrystals chiral nematic materials[J]. China Pulp & Paper, 2024, 43(7): 135−140, 83. DOI: 10.11980/j.issn.0254-508X.2024.07.016.

PING Xinxin, XU Huawei, DONG Hanqi, et al. Research progress of cellulose nanocrystals chiral nematic materials[J]. China Pulp & Paper, 2024, 43(7): 135−140, 83. DOI: 10.11980/j.issn.0254-508X.2024.07.016.
[8]

WALTERS C M, BOOTT C E, NGUYEN T D, et al. Iridescent cellulose nanocrystal films modified with hydroxypropyl cellulose[J]. Biomacromolecules, 2020, 21(3): 1295−1302. DOI: 10.1021/acs.biomac.0c00056.
[9]

TRAN A, HAMAD W Y, MACLACHLAN M J. Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures[J]. Langmuir, 2018, 34(2): 646−652. DOI: 10.1021/acs.langmuir.7b03920.
[10]

YAO Kun, MENG Qijun, BULONE V, et al. Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color[J]. Advanced Materials, 2017, 29(28): 1701323. DOI: 10.1002/adma.201701323.
[11]

MENG Yahui, CAO Yunfeng, JI Hairui, et al. Fabrication of environmental humidity-responsive iridescent films with cellulose nanocrystal/polyols[J]. Carbohydrate Polymers, 2020, 240: 116281. DOI: 10.1016/j.carbpol.2020.116281.
[12]

XU Yunzhe, HAN Jing, XU Nuo, et al. A two-step method for producing iridescent and tough all-cellulose liquid crystal films[J]. Cellulose, 2025, 32(10): 5959−5971. DOI: 10.1007/s10570-025-06607-7.
[13]

ZHANG Shanshan, LI Shineng, WU Qiang, et al. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties[J]. Composites Part B: Engineering, 2021, 212: 108699. DOI: 10.1016/j.compositesb.2021.108699.
[14]

LI Zongzhe, WANG P B, ZHANG Yinghao, et al. Durable hydrophobic iridescent films with tunable colors from self-assembled cellulose nanocrystals[J]. Small, 2025, 21(6): 2409701. DOI:10.1002/smll.202409701.
[15]

JIN Haidong, SUN Guangshi, TANG Qizheng, et al. Tunable-color chiral liquid crystal film of cellulose nanocrystal with outstanding antibacterial and UV shielding capabilities for multifunction coating applications[J]. Carbohydrate Polymers, 2025, 354: 123306. DOI: 10.1016/j.carbpol.2025.123306.
[16]

PARIT M, SAHA P, DAVIS V A, et al. Transparent and homogenous cellulose nanocrystal/lignin UV-protection films [J]. ACS Omega, 2018, 3(9): 10679−10691. DOI: 10.1021/acsomega.8b01345.
[17]

SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786−794. DOI: 10.1177/004051755902901003.
[18] 徐蕴哲, 陈一钒, 林心怡, 等. 聚乙二醇/纤维素纳米晶体复合液晶薄膜微观结构及湿度响应行为[J]. 浙江农林大学学报, 2024, 41(1): 169−175. XU Yunzhe, CHEN Yifan, LIN Xinyi, et al. Microstructure and humidity response behavior of polyethylene glycol/cellulose nanocrystals composite liquid crystal films[J]. Journal of Zhejiang A&F University, 2024, 41(1): 169−175. DOI: 10.11833/j.issn.2095-0756.20230236.

XU Yunzhe, CHEN Yifan, LIN Xinyi, et al. Microstructure and humidity response behavior of polyethylene glycol/cellulose nanocrystals composite liquid crystal films[J]. Journal of Zhejiang A&F University, 2024, 41(1): 169−175. DOI: 10.11833/j.issn.2095-0756.20230236.
[19]

XU Yunzhe, HE Lina, XIE Zumin, et al. Influence of PEG on toughness, humidity sensitivity and structural color of cellulose nanocrystal films[J]. Cellulose, 2024, 31(11): 6885−6896. DOI: 10.1007/s10570-024-06035-z.
[20] 任长英. 木质素-ZnO基抗菌超疏水木材表面的构建与性能研究[D]. 杭州: 浙江农林大学, 2023. REN Changying. Study on Construction and Properties of Lignin-ZnO Based Antibacterial and Superhydrophobic Wood Surface[D]. Hangzhou: Zhejiang A&F University, 2023.

REN Changying. Study on Construction and Properties of Lignin-ZnO Based Antibacterial and Superhydrophobic Wood Surface[D]. Hangzhou: Zhejiang A&F University, 2023.
[21]

LING Zhe, CHEN Jie, WANG Xinyan, et al. Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response[J]. Carbohydrate Polymers, 2022, 296: 119920. DOI: 10.1016/j.carbpol.2022.119920.
[22] 罗丹, 舒璇, 孙高峰, 等. 马来酸改性木质素增强纳米纤维素复合膜的制备及性能[J]. 复合材料学报, 2025, 42(2): 791−801. LUO Dan, SHU Xuan, SUN Gaofeng, et al. Preparation and properties of maleic acid modified lignin reinforced nano-cellulose composite membrane[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 791−801. DOI: 10.13801/j.cnki.fhclxb.20240520.001.

LUO Dan, SHU Xuan, SUN Gaofeng, et al. Preparation and properties of maleic acid modified lignin reinforced nano-cellulose composite membrane[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 791−801. DOI: 10.13801/j.cnki.fhclxb.20240520.001.
[23]

LISÝ A, HÁZ A, NADÁNYI R, et al. About hydrophobicity of lignin: a review of selected chemical methods for lignin valorisation in biopolymer production[J]. Energies, 2022, 15(17): 6213. DOI: 10.3390/en15176213.
[24] 刘亦, 刘雁雁, 刘元军, 等. 木质素阻燃剂的研究进展[J]. 现代纺织技术, 2024, 32(6): 28−40. LIU Yi, LIU Yanyan, LIU Yuanjun, et al. Research progress of lignin flame retardant[J]. Advanced Textile Technology, 2024, 32(6): 28−40. DOI: 10.19398/j.att.202310025.

LIU Yi, LIU Yanyan, LIU Yuanjun, et al. Research progress of lignin flame retardant[J]. Advanced Textile Technology, 2024, 32(6): 28−40. DOI: 10.19398/j.att.202310025.
[25]

ZHANG Shikai, CHENG Xinxin, FU Quanbin, et al. Pectin-nanolignin composite films with water resistance, UV resistance, and antibacterial activity[J]. Food Hydrocolloids, 2023, 143: 108783. DOI: 10.1016/j.foodhyd.2023.108783.
[26]

ZHANG Jiawei, TIAN Zhongjian, JI Xingxiang, et al. Fabrication mechanisms of lignin nanoparticles and their ultraviolet protection ability in PVA composite film[J]. Polymers, 2022, 14(19): 4196. DOI: 10.3390/polym14194196.