[1] MOBARAK M B, PINKY N S, CHOWDHURY F, et al. Environmental remediation by hydroxyapatite: solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye[J]. Journal of Saudi Chemical Society, 2023, 27(5): 101690. DOI: 10.1016/j.jscs.2023.101690.
[2] ESPARGARÓ A, LLABRÉS S, SAUPE S J, et al. On the binding of Congo red to amyloid fibrils[J]. Angewandte Chemie International Edition, 2020, 59(21): 8104−8107. DOI: 10.1002/ange.201916630.
[3] NGUYEN N T T, NGUYEN L M, NGUYEN T T T, et al. Green synthesis of ZnFe2O4@ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation[J]. Journal of Environmental Management, 2023, 326: 116746. DOI: 10.1016/j.jenvman.2022.116746.
[4] PALACIO D A, BECERRA Y, URBANO B F, et al. Antibiotics removal using a chitosan-based polyelectrolyte in conjunction with ultrafiltration membranes[J]. Chemosphere, 2020, 258: 127416. DOI: 10.1016/j.chemosphere.2020.127416.
[5] EL SAYED M M. Production of polymer hydrogel composites and their applications[J]. Journal of Polymers and the Environment, 2023, 31(7): 2855−2879. DOI: 10.1007/s10924-023-02796-z.
[6] 王珏, 郭明, 孙立苹. 磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能[J]. 浙江农林大学学报, 2020, 37(6): 1112−1119. WANG Jue, GUO Ming, SUN Liping. Preparation of magnetic sodium alginate composite gel balls and their adsorption properties for Pb2+[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1112−1119. DOI: 10.11833/j.issn.2095-0756.20190751.

WANG Jue, GUO Ming, SUN Liping. Preparation of magnetic sodium alginate composite gel balls and their adsorption properties for Pb2+[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1112−1119.
[7]

SINGHAL R, GUPTA K. A review: tailor-made hydrogel structures (classifications and synthesis parameters)[J]. Polymer-Plastics Technology and Engineering, 2016, 55(1): 54−70. DOI: 10.1080/03602559.2015.1050520.
[8] 李钧洋, 霍丽竹, 龚著祥, 等. 木质素磺酸钠吸附材料的制备及对刚果红的吸附性能[J]. 浙江农林大学学报, 2024, 41(4): 870−878. LI Junyang, HUO Lizhu, GONG Zhuxiang, et al. Preparation of sodium lignosulfonate adsorption materials and their adsorption properties for Congo red[J]. Journal of Zhejiang A&F University, 2024, 41(4): 870−878. DOI: 10.11833/j.issn.2095-0756.20230585.

LI Junyang, HUO Lizhu, GONG Zhuxiang, et al. Preparation of sodium lignosulfonate adsorption materials and their adsorption properties for Congo red[J]. Journal of Zhejiang A&F University, 2024, 41(4): 870−878.
[9]

GRISHECHKO L I, AMARAL-LABAT G, SZCZUREK A, et al. New tannin-lignin aerogels[J]. Industrial Crops and Products, 2013, 41: 347−355. DOI: 10.1016/j.indcrop.2012.04.052.
[10]

AFEWERKI S, EDLUND U. Combined catalysis: a powerful strategy for engineering multifunctional sustainable lignin-based materials[J]. ACS Nano, 2023, 17(8): 7093−7108. DOI: 10.1021/acsnano.3c00436.
[11]

MILCZAREK G, REBIS T, FABIANSKA J. One-step synthesis of lignosulfonate-stabilized silver nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2013, 105: 335−341. DOI: 10.1016/j.colsurfb.2013.01.010.
[12]

GAN Donglin, XING Wensi, JIANG Lili, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry[J]. Nature Communications, 2019, 10: 1487. DOI: 10.1038/s41467-019-09351-2.
[13]

MARULASIDDESHWARA M B, KUMAR P R. Synthesis of Pd(0) nanocatalyst using lignin in water for the Mizoroki-Heck reaction under solvent-free conditions[J]. International Journal of Biological Macromolecules, 2016, 83: 326−334. DOI: 10.1016/j.ijbiomac.2015.11.034.
[14]

WANG Chao, FENG Xuezhen, SHANG Shibin, et al. Lignin/sodium alginate hydrogel for efficient removal of methylene blue[J]. International Journal of Biological Macromolecules, 2023, 237: 124200. DOI: 10.1016/j.ijbiomac.2023.124200.
[15] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016. WENG Shifu, XU Yizhuang. Fourier Transform Infrared Spectrum Analysis[M]. 3rd ed. Beijing: Chemical Industry Press, 2016.

WENG Shifu, XU Yizhuang. Fourier Transform Infrared Spectrum Analysis[M]. 3rd ed. Beijing: Chemical Industry Press, 2016.
[16]

DIKSHA K, BHAVANAM A, GIRIBABU D. Lignin and black liquor based composite hydrogels for the enhanced adsorption of malachite green dye from aqueous solutions: kinetics, rheology and isotherm studies[J]. International Journal of Biological Macromolecules, 2025, 296: 139613. DOI: 10.1016/j.ijbiomac.2025.139613.
[17]

WU Meiyan, ZHANG Yidong, FENG Xiaoyan, et al. Fabrication of cationic cellulose nanofibrils/sodium alginate beads for Congo red removal[J]. iScience, 2023, 26(10): 107783. DOI: 10.1016/j.isci.2023.107783.
[18]

SU Haize, QIU Weipeng, DENG Tianren, et al. Fabrication of physically multi-crosslinked sodium alginate/carboxylated-chitosan/montmorillonite-base aerogel modified by polyethyleneimine for the efficient adsorption of organic dye and Cu(Ⅱ) contaminants[J]. Separation and Purification Technology, 2024, 330: 125321. DOI: 10.1016/j.seppur.2023.125321.
[19]

LÜ Aowei, LÜ Xue, XU Xiaoyan, et al. Tailored multifunctional composite hydrogel based on chitosan and quaternary ammonium ionic liquids@montmorillonite with different chain lengths for effective removal of dyes and 4-nitrophenol[J]. Separation and Purification Technology, 2024, 342: 127019. DOI: 10.1016/j.seppur.2024.127019.
[20]

WANG Jinxia, TAN Yunfeng, YANG Hongjun, et al. On the adsorption characteristics and mechanism of methylene blue by ball mill modified biochar[J]. Scientific Reports, 2023, 13: 21174. DOI: 10.1038/s41598-023-48373-1.
[21]

AFEWERKI S, WANG Xichi, RUIZ-ESPARZA G U, et al. Combined catalysis for engineering bioinspired, lignin-based, long-lasting, adhesive, self-mending, antimicrobial hydrogels[J]. ACS Nano, 2020, 14(12): 17004−17017. DOI: 10.1021/acsnano.0c06346.
[22]

FENG Li, LIU Shuang, ZHENG Huaili, et al. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering[J]. Ultrasonics Sonochemistry, 2018, 44: 53−63. DOI: 10.1016/j.ultsonch.2018.02.017.
[23]

AYATZHAN A, TASHENOV A, NURGELDI A, et al. P(DADMAAC-co-DMAA): synthesis, thermal stability, and kinetics[J]. Polymers for Advanced Technologies, 2021, 32(7): 2669−2675. DOI: 10.1002/pat.4999.
[24]

ZHANG Xiao, LIU Weifeng, CAI Junqi, et al. Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance[J]. Journal of Materials Chemistry A, 2019, 7(47): 26917−26926. DOI: 10.1039/C9TA10509C.
[25]

REN Jie, WANG Xuemiao, ZHAO Lingling, et al. Double network gelatin/chitosan hydrogel effective removal of dyes from aqueous solutions[J]. Journal of Polymers and the Environment, 2022, 30(5): 2007−2021. DOI: 10.1007/s10924-021-02327-8.
[26] 王丽琼, 李霞, 侯淋, 等. 玉米芯-环糊精交联复合材料对染料分子的吸附性能[J]. 应用化工, 2024, 53(1): 10−14. WANG Liqiong, LI Xia, HOU Lin, et al. Adsorption properties of corncob and cyclodextrin crosslinked composites for dye molecules[J]. Applied Chemical Industry, 2024, 53(1): 10−14. DOI: 10.3969/j.issn.1671-3206.2024.01.003.

WANG Liqiong, LI Xia, HOU Lin, et al. Adsorption properties of corncob and cyclodextrin crosslinked composites for dye molecules[J]. Applied Chemical Industry, 2024, 53(1): 10−14.
[27]

LIU Qiang, XIA Na, WAN Wenjing, et al. Selective capture of toxic anionic dyes of a novel prepared DMDAAC-grafted chitosan/genipin/cellulose hydrogel beads with antibacterial activity[J]. International Journal of Biological Macromolecules, 2021, 189: 722−733. DOI: 10.1016/j.ijbiomac.2021.08.116.
[28]

AL-GHOUTI M A, DA’ ANA D A. Guidelines for the use and interpretation of adsorption isotherm models: a review[J]. Journal of Hazardous Materials, 2020, 393: 122383. DOI: 10.1016/j.jhazmat.2020.122383.
[29]

LIN Qingwen, CHANG Jiali, GAO Mengfan, et al. Synthesis of magnetic epichlorohydrin cross-linked carboxymethyl cellulose microspheres and their adsorption behavior for methylene blue[J]. Journal of Environmental Science and Health, Part A, 2017, 52(2): 106−116. DOI: 10.1080/10934529.2016.1237117.