[1] BHAT K A, MAHAJAN R, PAKHTOON M M, et al. Low temperature stress tolerance: an insight into the omics approaches for legume crops [J/OL]. Frontiers in Plant Science, 2022, 13: 888710[2023-07-20]. doi: 10.3389/fpls.2022.888710.
[2] LIU Yuanyuan, WU Chu, HU Xin, et al. Transcriptome profiling reveals the crucial biological pathways involved in cold response in moso bamboo (Phyllostachys edulis) [J]. Tree Physiology, 2019, 40(4): 538 − 556.
[3] THEOCHARIS A, CLEMENT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures [J]. Planta, 2012, 235(6): 1091 − 1105.
[4] YANG Chunbao, YANG Haizhen, XU Qijun, et al. Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon) [J/OL]. Phytochemistry, 2020, 174: 112346[2023-07-20]. doi: 10.1016/j.phytochem.2020.112346.
[5] EOM S H, AHN M A, KIM E, et al. Plant response to cold stress: cold stress changes antioxidant metabolism in heading type kimchi cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Antioxidants, 2022, 11(4): 700[2023-07-20]. doi: 10.3390/antiox11040700.
[6] WHITLOW T H, BASSUK N L, RANNEY T G, et al. An improved method for using electrolyte leakage to assess membrane competence in plant tissues [J]. Plant Physiology, 1992, 98(1): 198 − 205.
[7] HAYAT S, HAYAT Q, ALYEMENI M N, et al. Role of proline under changing environments: a review [J]. Plant Signaling &Behavior, 2012, 7(11): 1456 − 1466.
[8] WANG Haiyue, GUO Lin, ZHA Ruofei, et al. Histological, metabolomic and transcriptomic analyses reveal mechanisms of cold acclimation of the moso bamboo (Phyllostachys edulis) leaf [J]. Tree Physiology, 2022, 42(11): 2336 − 2352.
[9] ZHOU Huang, ZHU Peilei, ZHONG Xiaojuan, et al. Transcriptome analysis of moso bamboo (Phyllostachys edulis) reveals candidate genes involved in response to dehydration and cold stresses [J/OL]. Frontiers in Plant Science, 2022, 13[2023-07-20]. doi: 10.3389/fpls.2022.960302.
[10] ABID M, TIAN Z, ATA-UL-KARIM S T, et al. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars [J]. Plant Physiology and Biochemistry, 2016, 106: 218 − 227.
[11] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant,Cell &Environment, 2010, 33(4): 453 − 467.
[12] ZHU Jiankang. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313 − 324.
[13] GUO Xiaoyu, LIU Dongfeng, CHONG Kang. Cold signaling in plants: insights into mechanisms and regulation [J]. Journal of Integrative Plant Biology, 2018, 60(9): 745 − 756.
[14] WU H L, LI L, CHENG Z C, et al. Cloning and stress response analysis of the PeDREB2A and PeDREB1A genes in moso bamboo (Phyllostachys edulis) [J]. Genetics and Molecular Research, 2015, 14(3): 10206 − 10223.
[15] THOMASHOW M F. So what’s new in the field of plant cold acclimation? Lots! [J]. Plant Physiology, 2001, 125(1): 89 − 93.
[16] WANG Dazhi, JIN Ya’nan, DING Xihan, et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants [J]. Biochemistry, 2017, 82: 1103 − 1117.
[17] SHI Yiting, DING Yanglin, YANG Shuhua. Molecular regulation of CBF signaling in cold acclimation [J]. Trends in Plant Science, 2018, 23(7): 623 − 637.
[18] HWARARI D, GUAN Yuanlin, AHMAD B, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress [J/OL]. International Journal of Molecular Sciences, 2022, 23(3): 1549[2023-07-20]. doi: 10.3390/ijms23031549.
[19] JIN Yanan, ZHAI Shanshan, WANG Wenjia, et al. Identification of genes from the ICE-CBF-COR pathway under cold stress in Aegilops-Triticum composite group and the evolution analysis with those from triticeae [J]. Physiology and Molecular Biology of Plants, 2018, 24(2): 211 − 229.
[20] 陈露, 杨立明, 罗玉明. 植物ICE蛋白基因家族的系统进化分析 [J]. 江苏农业科学, 2016, 44(2): 42 − 47.

CHEN Lu, YANG Liming, LUO Yuming. Phylogenetic analysis of the plant ICE protein gene family [J] Jiangsu Agricultural Sciences, 2016, 44(2): 42 − 47.
[21]

YANG Xiaoyan, WANG Rui, HU Qinglei, et al. DlICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis [J]. Plant Physiology and Biochemistry, 2019, 142: 490 − 499.
[22]

DUAN Yadong, HAN Jiaxin, GUO Baitao, et al. MbICE1 Confers drought and cold tolerance through up-regulating antioxidant capacity and stress-resistant genes in Arabidopsis thaliana [J/OL]. International Journal of Molecular Sciences, 2022, 23(24): 16072[2023-07-20]. doi: 10.3390/ijms232416072.
[23]

DENG Cuiyun, YE Haiyan, FAN Meng, et al. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis [J/OL]. Plant Signaling & Behavior, 2017, 12(5): e1316442[2023-07-20]. doi: 10.1080/15592324.2017.1316442.
[24]

CHANDER S, ALMEIDA D M, SERRA T S, et al. OsICE1 transcription factor improves photosynthetic performance and reduces grain losses in rice plants subjected to drought [J]. Environmental and Experimental Botany, 2018, 150: 88 − 98.
[25] 兰智鑫, 侯丹, 吴蔼民, 等. 毛竹PeCIGRs基因的克隆及表达分析[J]. 浙江农林大学学报, 2023, 40(5): 982 − 990.

LAN Zhixin, HOU Dan, WU Aimin, et al. Cloning and expression analysis of PeCIGRs gene in Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2023, 40(5): 982 − 990.
[26]

HUANG Bin, HUANG Zhinuo, MA Ruifang, et al. Genome-wide identification and expression analysis of LBD transcription factor genes in moso bamboo (Phyllostachys edulis) [J/OL]. BMC Plant Biology, 2021, 21(1): 34182934[2023-07-20]. doi: 10.1186/s12870-021-03078-3.
[27]

GAO Jian, ZHANG Ying, ZHANG Chunling, et al. Characterization of the floral transcriptome of moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis [J/OL]. PLoS One, 2014, 9(6): 24915141[2023-07-20]. doi: 10.1371/journal. pone. 0098910.
[28]

PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nature Genetics, 2013, 45(4): 456 − 461.
[29]

HUANG Zhuo, JIN Sihan, GUO Handu, et al. Genome-wide identification and characterization of TIFY family genes in moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses [J/OL]. PeerJ, 2016, 4: e2620[2023-07-20]. doi: 10.7717/peerj.2620.
[30] 徐秀荣, 杨克彬, 王思宁, 等. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析[J]. 植物科学学报, 2019, 37(5): 610 − 620.

XU Xiurong, YANG Kebin, WANG Sining, et al. Identification of bHLH transcription factors in moso bamboo (Phyllostachys edulis) and their expression analysis under drought and salt stress [J]. Plant Science Journal, 2019, 37(5): 610 − 620.
[31]

FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future [J]. Nucleic Acids Research, 2016, 44(D1): 279 − 285.
[32] 李新然, 张智俊, 喻珮瑶, 等. 毛竹SWEET基因家族的全基因组鉴定与分析[J]. 生物信息学, 2020, 18(4): 236 − 246.

LI Xinran, ZHANG Zhijun, YU Peiyao, et al. Genome-wide identification and analysis of SWEET gene family in Phyllostachys edulis [J]. Bioinformatics, 2020, 18(4): 236 − 246.
[33]

LETUNIC I, DOERKS T, BORK P. SMART 7: recent updates to the protein domain annotation resource [J/OL]. Nucleic Acids Research, 2012, 40(D1): D302[2023-07-20]. doi: 10.1093/nar/gkr931.
[34]

CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202.
[35]

LIU Hanmei, WANG Yongbin, LIU Lijun, et al. Pleiotropic ZmICE1 is an important transcriptional regulator of maize endosperm starch biosynthesis [J/OL]. Frontiers in Plant Science, 2022, 13: 895763[2023-07-20]. doi: 10.3389/fpls.2022.895763.
[36] 蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013.

CAI Qingsheng. Plant Physiology[M]. Beijing: China Agricultural University Press, 2013.
[37] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.

ZHOU Qi. Guidance for Plant Physiology Experiments [M]. Beijing: China Agricultural University Press, 2000.
[38] 吴林军. 非生物胁迫下毛竹qRT-PCR分析中内参基因的选择[D]. 杭州: 浙江农林大学, 2019.

WU Linjun. The Selection of Endogenous Reference Genes in Phyllostachys edulis Treated with Abiotic Stresses for qRT-PCR Analysis [D]. Hangzhou: Zhejiang A&F University, 2019.
[39]

ZHOU L, HE Y J, LI J, et al. An eggplant SmICE1a gene encoding MYC-type ICE1-like transcription factor enhances freezing tolerance in transgenic Arabidopsis thaliana [J]. Plant Biology, 2020, 22(3): 450 − 458.
[40]

WANG Xipan, SONG Qiping, GUO Haoguo, et al. StICE1 enhances plant cold tolerance by directly upregulating StLTI6A expression [J]. Plant Cell Reports, 2022, 42(1): 197 − 210.
[41]

WANG Peiwen, ZHU Lin, LI Ziheng, et al. Genome-wide identification of the U-box E3 ubiquitin ligase gene family in cabbage (Brassica oleracea var. capitata) and its expression analysis in response to cold stress and pathogen infection [J/OL]. Plants-Basel, 2023, 12(7): 1437[2023-07-20]. doi: 10.3390/plants12071437.
[42]

MARINO D, DUNAND C, PUPPO A, et al. A burst of plant NADPH oxidases [J]. Trends in Plant Science, 2012, 17(1): 9 − 15.