[1] 刘一星, 赵广杰. 木质资源材料学[M]. 北京: 中国林业出版社, 2004: 8.

LIU Yixing, ZHAO Guangjie. Wood Resource Materials Science[M]. Beijing: China Forestry Publishing House, 2004: 8.
[2] 徐有明. 油松木材物理力学性质的研究[J]. 安徽农学院学报, 1989, 16(1): 74−82.

XU Youming. Studies on physico-mechanical properties of the wood of Pinus tabulaeformis[J]. Journal of Anhui Agricultural College, 1989, 16(1): 74−82.
[3] 王展光, 石昂, 王婷婷, 等. 黔东南州杉木物理力学性能研究[J]. 福建建筑, 2020(6): 87−91.

WANG Zhanguang, SHI Ang, WANG Tingting, et al. Research on mechanical properties of Chinese fir in Qiandongnan[J]. Fujian Architecture & Construction, 2020(6): 87−91.
[4] 尹思慈. 木材学[M]. 北京: 中国林业出版社, 1996: 169−180.

YIN Sici. Wood Science[M]. Beijing: China Forestry Publishing House, 1996: 169−180.
[5] 孟宪杰, 陈金永, 师希望, 等. 木材横纹全表面受压性能试验研究[J]. 中国科技论文, 2016, 11(1): 62−65.

MENG Xianjie, CHEN Jinyong, SHI Xiwang, et al. An experimental study on the wood performance under whole section compression in the transverse direction[J]. China Science Paper, 2016, 11(1): 62−65.
[6] 孙丽萍, 崔永志, 刘一星. 木材横纹压缩过程中径向、弦向加载差异性分析[J]. 林业科技, 1997, 22(3): 38−41.

SUN Liping, CUI Yongzhi, LIU Yixing. Analysis of the differences in radial and tangential loading during the compression process of wood perpendicular to grain[J]. Forestry Science & Technology, 1997, 22(3): 38−41.
[7] 孙凤亮. 6种进口木材横纹抗压强度测试与分析[J]. 中国木材, 2022(3/4): 33−38.

SUN Fengliang. Testing and analysis of compressive strength perpendicular to grain in 6 types of imported wood[J]. China Wood, 2022(3/4): 33−38.
[8]

NORIMOTO M. Large compressive deformation in wood[J]. Mokuzai Gakkaishi, 1993, 39(8): 867−874.
[9] 李坚, 吴玉章, 马岩, 等. 功能性木材[M]. 北京: 科学出版社, 2011.

LI Jian, WU Yuzhang, MA Yan, et al. Functional Wood[M]. Beijing: Science Press, 2011.
[10]

KITAMORI A, JUNG K, MORI T, et al. Mechanical properties of compressed wood in accordance with the compression ratio[J]. Mokuzai Gakkaisi, 2010, 56(2): 67−78.
[11] 黄荣凤. 实木层状压缩技术研究[M]. 北京: 科学出版社, 2023.

HUANG Rongfeng. Research on Solid Wood Sandwich Compression Technology[M]. Beijing: Science Press, 2023.
[12] 李晓玲, 黄荣凤, 何啸宇, 等. 杉木层状压缩的形成及其密度分布特征[J]. 木材科学与技术, 2024, 38(3): 11−20.

LI Xiaoling, HUANG Rongfeng, HE Xiaoyu, et al. Sandwich compression formation and density distribution in Chinese fir (Cunninghamia lanceolata) wood[J]. Chinese Journal of Wood Science and Technology, 2024, 38(3): 11−20.
[13] 李任, 黄荣凤, 常建民, 等. 预热温度对层状压缩木材力学性能的影响[J]. 浙江农林大学学报, 2018, 35(5): 935−941.

LI Ren, HUANG Rongfeng, CHANG Jianmin, et al. Sandwich compression of wood: the effect of preheating temperature on the mechanical properties of Sandwich compressed wood[J]. Journal of Zhejiang A&F university, 2018, 35(5): 935−941.
[14]

ZHAO Liyuan, HUANG Rongfeng, WANG Yanwei, et al. Effects of compressed layer(s) position and thickness on the physico-mechanical properties of sandwich-compressed Chinese fir (Cunninghamia lanceolata)[J/OL]. Wood Material Science & Engineering, 2024[2024-07-12]. DOI: 10.1080/17480272.2024.2397487.
[15]

HUANG Rongfeng, FENG Shanghuan, GAO Zhiqiang. Effect of water/moisture migration in wood preheated by hot press on sandwich compression formation[J]. Holzforschung, 2022, 76(11/12): 1003−1012.
[16]

HUANG Rongfeng, FENG Shanghuan, GAO Zhiqiang, et al. Mechanism elucidation for wood sandwich compression from the perspective of yield stress[J]. Holzforschung, 2023, 77(8): 629−639.
[17] 黄荣凤, 高志强, 冯上环, 等. 含水率非均匀分布木材在热板加热下温度分布的变化规律[J]. 木材科学与技术, 2023, 37(1): 41−48.

HUANG Rongfeng, GAO Zhiqiang, FENG Shanghuan, et al. Temperature distribution in wood with uneven moisture distribution during preheating process by press platens[J]. Chinese Journal of Wood Science and Technology, 2023, 37(1): 41−48.
[18] 中国木材标准化技术委员会. 层状压缩木材: LY/T 3376—2024[S]. 北京: 中国标准出版社, 2024.

National Technical Committee on Timber of Standardization Administrator of China. Sandwich Compressed Wood: LY/T 3376−2024[S]. Beijing: Standards Press of China, 2024.
[19] 成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992.

CHENG Junqing, YANG Jiaju, LIU Peng. Timber of China[M]. Beijing: China Forestry Publishing House, 1992.
[20]

LI Ren, GAO Zhiqiang, FENG Shanghuan, et al. Effects of preheating temperatures on the formation of sandwich compression and density distribution in the compressed wood[J]. Journal of Wood Science, 2018, 64(6): 751−757.
[21]

TABARSA T, CHUI Y H. Stress-strain response of wood under radial compression: Part I test method and influences of cellular properties[J]. Wood and Fiber Science, 2000, 32(2): 144−152.
[22]

TABARSA T, CHUI Y H. Characterizing microscopic behavior of wood under transverse compression. Part II effect of species and loading direction[J]. Wood and Fiber Science, 2001, 33(2): 223−232.
[23]

CHUI Y H. TABARSA T. Stress-strain response of wood under radial compression. Part 3 prediction using cellular theory[J]. Journal of the Institute of Wood Science, 2007, 17(6): 333−342.
[24] 杨玉山, 沈华杰, 王宪, 等. 人工林速生杨木材水热压弯缺陷的微观构造研究[J]. 林业世界, 2019, 8(2): 46−52.

YANG Yushan, SHEN Huajie, WANG Xian, et al. Microscopic investigation of defects in hydrothermal and compression bending artificially prepared Poplar wood[J]. World Journal of Forestry, 2019, 8(2): 46−52.
[25]

ANDO K, ONDA H. Mechanism for deformation of wood as a honeycomb structure Ⅰ: effect of anatomy on the initial deformation process during radial compression[J]. Journal of Wood Science, 1999, 45(2): 120−126.
[26]

ANDO K, ONDA H. Mechanism for deformation of wood as a honeycomb structure Ⅱ: first buckling mechanism of cell walls under radial compression using the generalized cell model[J]. Journal of Wood Science, 1999, 45(3): 250−253.
[27]

MÜLLER U, GINDL W, TEISCHINGER A. Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain[J]. IAWA Journal, 2003, 24(2): 117−128.
[28] 边明明. 连续压缩载荷下木材力学性能及微观结构变化定量表征[D]. 北京: 中国林业科学研究院, 2011.

BIAN Mingming. Effects of Micro-structure on Wood Mechanical Properties under Continuous Compression[D]. Beijing: Chinese Academy of Forestry, 2011.