[1] JONES M W, KELLEY D I, BURTON C A, et al. State of wildfires 2023−2024 [J]. Earth System Science Data, 2024, 16(8): 3601−3685.
[2] BODÍ M B, MARTIN D A, BALFOUR V N, et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects [J]. Earth-Science Reviews, 2014, 130: 103−127.
[3] KIM T, LEE J, LEE Y E, et al. Exploring the role of ash on pore clogging and hydraulic properties of ash-covered soils under laboratory experiments[J/OL]. Fire, 2022, 5(4): 99[2025-02-23]. DOI: 10.3390/fire5040099.
[4] GODOY L M, SIMÕES L B, MARTINS M A S, et al. An exploratory study into ash mobilization using lysimeters [J]. Journal of Hydrology and Hydromechanics, 2022, 70(4): 432−441.
[5] PEREIRA P, CERDÀ A, ÚBEDA X, et al. Modelling the impacts of wildfire on ash thickness in a short-term period [J]. Land Degradation & Development, 2015, 26(2): 180−192.
[6] 罗冠枝, 罗敏玄, 陈全明, 等. 森林火灾对泥石流孕灾环境及成灾机制的影响分析[J]. 矿产勘查, 2024, 15(8): 1517−1523.

LUO Guanzhi, LUO Minxuan, CHEN Quanming, et al. Analysis on the influence of forest fire on the disaster environment and disaster mechanism of debris flow [J]. Mineral Exploration, 2024, 15(8): 1517−1523.
[7]

VAHEDIFARD F, ABDOLLAHI M, LESHCHINSKY B A, et al. Interdependencies between wildfire-induced alterations in soil properties, near-surface processes, and geohazards[J/OL]. Earth and Space Science, 2024, 11(2): e2023EA003498[2025-02-23]. DOI: 10.1029/2023EA003498.
[8]

ERSÖZ T, HANEDA K, GONDA Y. The role of volcanic ash thickness on the hydraulic conductivity of the ground and the initiation of debris flows [J]. Natural Hazards, 2024, 120(12): 10969−11007.
[9]

JESUS F, MESQUITA F, SERPA D, et al. Effects of wildfire ash on the fatty acid and sugar profiles of bivalves-a comparative study of a freshwater and a marine species[J/OL]. Environmental Pollution, 2025, 366: 125540[2025-02-23]. DOI: 10.1016/j.envpol.2024.125540.
[10]

MAGLIOZZI L J, MATIASEK S J, ALPERS C N, et al. Wildland-urban interface wildfire increases metal contributions to stormwater runoff in Paradise, California[J]. Environmental Science. Processes & Impacts, 2024, 26(4): 667−685.
[11]

LEÓN J, BODÍ M B, CERDÀ A, et al. The contrasted response of ash to wetting: the effects of ash type, thickness and rainfall events [J]. Geoderma, 2013, 209: 143−152.
[12] 王冠, 吴文清, 刘明明, 等. 林火前后坡面覆盖类型对产流产沙影响的模拟试验[J]. 水土保持学报, 2022, 36(6): 82−87.

WANG Guan, WU Wenqing, LIU Mingming, et al. Simulation experiment on the influence of slope cover types on runoff and sediment yield before and after forest fire [J]. Journal of Soil and Water Conservation, 2022, 36(6): 82−87.
[13]

WOODS S W, BALFOUR V N. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils [J]. Journal of Hydrology, 2010, 393(3/4): 274−286.
[14]

CERDÀ A, DOERR S H. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period [J]. CATENA, 2008, 74(3): 256−263.
[15]

CARRÀ B G, BOMBINO G, DENISI P, et al. Water infiltration after prescribed fire and soil mulching with fern in Mediterranean forests[J/OL]. Hydrology, 2021, 8(3): 95[2025-02-23]. DOI: 10.3390/hydrology8030095.
[16]

ONDA Y, DIETRICH W E, BOOKER F. Evolution of overland flow after a severe forest fire, Point Reyes, California [J]. CATENA, 2008, 72(1): 13−20.
[17]

AN Lingqiu, WANG Lunjiang, WU Tingye, et al. Post-wildfire wind and water erosion could accelerate toxic metals and nutrients movements on subtropical karst hillslopes[J/OL]. CATENA, 2025, 254: 109006[2025-02-23]. DOI: 10.1016/j.catena.2025.109006.
[18]

KINNER D A, MOODY J A. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes [J]. Journal of Hydrology, 2010, 381(3/4): 322−332.
[19]

LARSEN I J, MacDONALD L H, BROWN E, et al. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? [J]. Soil Science Society of America Journal, 2009, 73(4): 1393−1407.
[20]

BELLÈ S L, BERHE A A, HAGEDORN F, et al. Key drivers of pyrogenic carbon redistribution during a simulated rainfall event [J]. Biogeosciences, 2021, 18(3): 1105−1126.
[21]

SANTÍN C, DOERR S H, OTERO X L, et al. Quantity, composition and water contamination potential of ash produced under different wildfire severities [J]. Environmental Research, 2015, 142: 297−308.
[22]

LOWE M A, MCGRATH G, LEOPOLD M. The impact of soil water repellency and slope upon runoff and erosion[J/OL]. Soil and Tillage Research, 2021, 205: 104756[2025-02-23]. DOI: 10.1016/j.still.2020.104756.
[23]

LUCAS-BORJA M E, PLAZA-ÀLVAREZ P A, MIJAN UDDIN S M, et al. Short-term hydrological response of soil after wildfire in a semi-arid landscape covered by Macrochloa tenacissima (L. ) Kunth[J/OL]. Journal of Arid Environments, 2022, 198: 104702[2025-02-23]. DOI: 10.1016/j.jaridenv.2021.104702.
[24]

MOODY J A, KINNER D A, ÚBEDA X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency [J]. Journal of Hydrology, 2009, 379(3/4): 291−303.
[25]

WOODS S W, BALFOUR V N. The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA[J/OL]. International Journal of Wildland Fire, 2008, 17(5): 535[2025-02-23]. DOI: 10.1071/wf07040.
[26]

LEÓN J, ECHEVERRÍA M T, MARTÍ C, et al. Can ash control infiltration rate after burning? An example in burned calcareous and gypseous soils in the Ebro Basin (NE Spain) [J]. CATENA, 2015, 135: 377−382.
[27]

EBEL B A. Wildfire impacts on soil-water retention in the Colorado front range, United States[J/OL]. Water Resources Research, 2012, 48(12): W12515[2025-02-23]. DOI: 10.1029/2012WR012362.
[28]

ROBICHAUD P R, WAGENBRENNER J W, PIERSON F B, et al. Infiltration and interrill erosion rates after a wildfire in western Montana, USA [J]. CATENA, 2016, 142: 77−88.
[29] 闵雷雷, 于静洁. 土壤斥水性及其对坡面产流的影响研究进展[J]. 地理科学进展, 2010, 29(7): 855−860.

MIN Leilei, YU Jingjie. Progress in the research of soil water repellency and its influences on overland flow generation [J]. Progress in Geography, 2010, 29(7): 855−860.
[30]

BODÍ M B, DOERR S H, CERDÀ A, et al. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil [J]. Geoderma, 2012, 191: 14−23.
[31]

DOERR S H, SHAKESBY R A, WALSH R P D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance [J]. Earth-Science Reviews, 2000, 51(1/4): 33−65.
[32]

STOOF C R, GEVAERT A I, BAVER C, et al. Can pore-clogging by ash explain post-fire runoff?[J/OL]. International Journal of Wildland Fire, 2016, 25(3): 294[2025-02-23]. DOI: 10.1071/wf15037.
[33] 梁晨, 肖莉, 史忠林, 等. 森林火灾流域侵蚀泥沙来源指纹技术研究进展[J]. 水土保持学报, 2023, 37(3): 1−9.

LIANG Chen, XIAO Li, SHI Zhonglin, et al. Advances on fingerprinting technology of sediment source in burned watershed [J]. Journal of Soil and Water Conservation, 2023, 37(3): 1−9.
[34]

PEREIRA P, ÚBEDA X, MARTIN D A. Fire severity effects on ash chemical composition and water-extractable elements [J]. Geoderma, 2012, 191: 105−114.
[35]

FROST R L, WEIER M L. Thermal treatment of whewellite−a thermal analysis and Raman spectroscopic study [J]. Thermochimica Acta, 2004, 409(1): 79−85.
[36]

ULERY A L, GRAHAM R C, AMRHEIN C. Wood-ash composition and soil pH following intense burning [J]. Soil Science, 1993, 156(5): 358−364.
[37]

MISRA M K, RAGLAND K W, BAKER A J. Wood ash composition as a function of furnace temperature [J]. Biomass and Bioenergy, 1993, 4(2): 103−116.
[38] 袁鹏丽, 覃佳宇, 周雨茜, 等. 旱改水型耕地红壤团聚体稳定性及影响因素研究[J]. 华中农业大学学报, 2025, 44(4): 47−57.

YUAN Pengli, QIN Jiayu, ZHOU Yuxi, et al. Stability and affecting factors of red soil agglomerates in dryland converted paddy fields [J]. Journal of Huazhong Agricultural University, 2025, 44(4): 47−57.
[39]

VALENCA R, RAMNATH K, DITTRICH T M, et al. Microbial quality of surface water and subsurface soil after wildfire[J/OL]. Water Research, 2020, 175: 115672[2025-02-23]. DOI: 10.1016/j.watres.2020.115672.
[40]

WIRTH X, ANTUNEZ V, ENRIQUEZ D, et al. Wildfire ash composition and engineering behavior [J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2024, 150(8): 04024067[2025-02-23]. DOI: 10.1061/JGGEFK.GTENG-11683.
[41]

SHAKESBY R A, BENTO C P M, FERREIRA C S S, et al. Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal [J]. CATENA, 2015, 128: 278−293.
[42]

KEMTER M, FISCHER M, LUNA L V, et al. Cascading hazards in the aftermath of Australia’s 2019/2020 Black Summer wildfires [J/OL]. Earth’s Future, 2021, 9(3): e2020EF001884[2025-02-23]. DOI: 10.1029/2020EF001884.
[43]

NERIS J, SANTIN C, LEW R, et al. Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: insights from Sydney’s largest water supply catchment [J]. Integrated Environmental Assessment and Management, 2021, 17(6): 1151−1161.
[44]

GABET E J, STERNBERG P. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows [J]. Geomorphology, 2008, 101(4): 666−673.
[45]

LEWIS S A, ROBICHAUD P R, HUDAK A T, et al. Evaluating the persistence of post-wildfire ash: a multi-platform spatiotemporal analysis [J/OL]. Fire-Switzerland, 2021, 4(4): 68[2025-02-23]. DOI: 10.3390/fire4040068.
[46]

THOMAZ E L. Ash physical characteristics affects differently soil hydrology and erosion subprocesses [J]. Land Degradation & Development, 2018, 29(3): 690−700.
[47]

MARTÍNEZ-MURILLO J F, HUESO-GONZÁLEZ P, RUIZ-SINOGA J D, et al. Short-term experimental fire effects in soil and water losses in southern of Spain [J]. Land Degradation & Development, 2016, 27(5): 1513−1522.
[48]

MOODY J A, MARTIN D A, HAIRE S L, et al. Linking runoff response to burn severity after a wildfire [J]. Hydrological Processes, 2008, 22(13): 2063−2074.
[49] 任云, 胡卸文, 王严, 等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质, 2018, 45(6): 150−156.

REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan [J]. Hydrogeology & Engineering Geology, 2018, 45(6): 150−156.
[50] 易伟, 余斌, 胡卸文, 等. 山火后首次泥石流预警[J]. 地球科学, 2024, 49(10): 3826−3840.

YI Wei, YU Bin, HU Xiewen, et al. On early warning of first debris flow after a wildfire [J]. Earth Science, 2024, 49(10): 3826−3840.
[51]

RENEAU S L, KATZMAN D, KUYUMJIAN G A, et al. Sediment delivery after a wildfire[J/OL]. Geology, 2007, 35(2): 151[2025-02-23]. DOI: 10.1130/g23288a.1.
[52]

RODRÍGUEZ-JIMÉNEZ E, CRUZ-PÉREZ N, KORITNIK J, et al. Revealing the impact of wildfires on groundwater quality: insights from Sierra de la Culebra (Spain)[J/OL]. Chemosphere, 2024, 365: 143375[2025-02-23]. DOI: 10.1016/j.chemosphere.2024.143375.
[53]

BODÍ M B, MATAIX-SOLERA J, DOERR S H, et al. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content [J]. Geoderma, 2011, 160(3/4): 599−607.
[54]

SÁNCHEZ-GARCÍA C, SANTÍN C, NERIS J, et al. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications[J/OL]. Environment International, 2023, 178: 108065[2025-02-23]. DOI: 10.1016/j.envint.2023.108065.
[55]

FERNANDEZ-MARCOS M L. Potentially toxic substances and associated risks in soils affected by wildfires: a review[J/OL]. Toxics, 2022, 10(1): 31[2025-02-23]. DOI: 10.3390/toxics10010031.
[56]

DENIS E H, TONEY J L, TAROZO R, et al. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: validation using HPLC-fluorescence detection [J]. Organic Geochemistry, 2012, 45: 7−17.
[57]

CAMPBELL M, TREBLE P C, McDONOUGH L K, et al. Combustion completeness and sample location determine wildfire ash leachate chemistry[J/OL]. Geochemistry, Geophysics, Geosystems, 2024, 25(5): e2024GC011470[2025-02-23]. DOI: 10.1029/2024GC011470.
[58] 张家洋, 蔺芳, 詹乃才, 等. 紫花苜蓿与无芒雀麦不同栽培模式下土壤团聚体形态结构、组成及有机碳特征[J]. 浙江农林大学学报, 2019, 36(6): 1077−1086.

ZHANG Jiayang, LIN Fang, ZHAN Naicai, et al. Morphological structure, composition, and organic carbon characteristics of soil agglomerations for alfalfa and ryegrass planting patterns [J]. Journal of Zhejiang A&F University, 2019, 36(6): 1077−1086.
[59] 方建德, 林成芳. 土壤有机质形成转化过程及其影响因素综述[J]. 亚热带资源与环境学报, 2024, 19(1): 24−34.

FANG Jiande, LIN Chengfang. A review of the formation and transformation process of soil organic matter and its influencing factors [J]. Journal of Subtropical Resources and Environment, 2024, 19(1): 24−34.
[60] 陈爽, 张翅鹏, 黄臣臣, 等. 微生物在不同pH下对水稻土胶体中砷释放的影响[J]. 农业环境科学学报, 2022, 41(5): 959−966.

CHEN Shuang, ZHANG Chipeng, HUANG Chenchen, et al. Effects of microorganisms on the release of arsenic from paddy soil colloids at different pH levels [J]. Journal of Agro-Environment Science, 2022, 41(5): 959−966.
[61]

GIOVANNINI G. Soil Erosion and Degradation as a Consequence of Forest Fires [M]. Logroño: Geoforma, 1994: 15−27.
[62]

HOLCOMB G J, DURGIN P B. Ash Leachate Can Reduce Surface Erosion (Research Note PSW-342) [M]. Berkeley: Pacific Southwest Forest and Range Experiment Station, 1979: 4.
[63]

AGBESHIE A A, ABUGRE S, ATTA-DARKWA T, et al. A review of the effects of forest fire on soil properties [J]. Journal of Forestry Research, 2022, 33(5): 1419−1441.
[64] 包明琢, 曲雪铭, 高倩倩, 等. 磷肥和生物炭配施对杉木林地土壤微生物的影响[J]. 西北林学院学报, 2022, 37(2): 10−19.

BAO Mingzhuo, QU Xueming, GAO Qianqian, et al. Effects of combined application of phosphate fertilizer and biochar on soil microorganism in Chinese fir woodland [J]. Journal of Northwest Forestry University, 2022, 37(2): 10−19.
[65]

HASAN M I, SINHA N, SONMEZ BAGHIRZADE B, et al. Wildfires in Alaskan boreal forests release elevated levels of polyaromatic hydrocarbon [J]. Environmental Science & Technology, 2025, 59(21): 10434−10444.
[66]

CERTINI G. Effects of fire on properties of forest soils: a review [J]. Oecologia, 2005, 143(1): 1−10.
[67]

FRITZE H, PENNANEN T, KITUNEN V. Characterization of dissolved organic carbon from burned humus and its effects on microbial activity and community structure [J]. Soil Biology and Biochemistry, 1998, 30(6): 687−693.
[68]

PIGNA M, CAPORALE A G, CAVALCA L, et al. Arsenic in the soil environment: mobility and phytoavailability [J]. Environmental Engineering Science, 2015, 32(7): 551−563.
[69]

ABBOTT B W, ROCHA A V, SHOGREN A, et al. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic [J]. Global Change Biology, 2021, 27(7): 1408−1430.
[70]

FONTÚRBEL T, CARRERA N, VEGA J A, et al. The effect of repeated prescribed burning on soil properties: a review[J/OL]. Forests, 2021, 12(6): 767[2025-02-23]. DOI: 10.3390/f12060767.
[71] 刘发林, 向鹏. 火干扰后土壤多环芳烃时空分布特征[J]. 土壤通报, 2016, 47(4): 973−979.

LIU Falin, XIANG Peng. Characteristics of temporal and spatial distribution of soil PAHs after fire disturbance [J]. Chinese Journal of Soil Science, 2016, 47(4): 973−979.
[72]

MEHARG A A, WRIGHT J, DYKE H, et al. Polycyclic aromatic hydrocarbon (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire [J]. Environmental Pollution, 1998, 99(1): 29−36.
[73]

KIM E J, OH J E, CHANG Y S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil [J]. Science of The Total Environment, 2003, 311(1/3): 177−189.