[1] 徐园园, 李竹帛, 周贺芳, 等. 不结球白菜 BrABF1 基因的克隆与功能分析[J]. 核农学报, 2021, 35(10): 2241 − 2249.

XU Yuanyuan, LI Zhubo, ZHOU Hefang, et al. Cloning and functional analysis of BrABF1 gene in non-heading Chinese cabbage [J]. Journal Nuclear Agricultural Science, 2021, 35(10): 2241 − 2249.
[2]

BLAZEV I, MONTAUT S, BURCUL F, et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants[J/OL]. Phytochemistry, 2020, 169, 112100 [2022-01-20]. doi:10.1016/j.phytochem.2019.112100.
[3]

AGERBIRK N, OLSEN C E. Glucosinolate structures in evolution [J]. Phytochemistry, 2012, 77: 16 − 45.
[4]

SONDERBY I E, GEU-FLORES F, HALKIER B A. Biosynthesis of glucosinolates-gene discovery and beyond [J]. Trends in Plant Science, 2010, 15(5): 283 − 290.
[5]

KECK A S, FINLEY J W. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium [J]. Integrative Cancer Therapies, 2004, 3(1): 5 − 12.
[6]

BONGONI R, VERKERK R, STEENBEKKERS B, et al. Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance [J]. Plant Foods for Human Nutrition, 2014, 69(3): 228 − 234.
[7]

NOVOTNY C, SCHULZOVA V, KRMELA A, et al. Ascorbic acid and glucosinolate levels in new czech cabbage cultivars: effect of production system and fungal infection[J/OL]. Molecules, 2018, 23(8): 1855[2022-02-03]. doi: 10.3390/molecules23081855.
[8]

MUGFORD S G, YOSHHIMOTO N, REICHELT M, et al. Disruption of adenosine-59-phosphosulfate kinase in arabidopsis reduces levels of sulfated secondary metabolites [J]. The Plant Cell, 2009, 21(3): 910 − 927.
[9]

RASK L, ANDREASSON E, EKBOM B, et al. Myrosinase: gene family evolution and herbivore defense in Brassicaceae [J]. Plant Molecular Biology, 2000, 42(1): 93 − 113.
[10]

KOS M, HOUSHYANI B, WIETSMA R, et al. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid [J]. Phytochemistry, 2012, 77(1): 162 − 170.
[11] 张园园. 油菜和拟南芥中几个硫代葡萄糖苷合成及调控基因的功能分析[D]. 武汉: 华中农业大学, 2007.

ZHANG Yuanyuan. Function Analyses of Several Genes Involved in Biosynthesis and Regulation of Glucosinolate in Brassica napus and Arabidopsis thaliana[D]. Wuhan: Huazhong Agricultural University, 2007.
[12]

CHHAJED S, MOSTAFA I, HE Y, et al. Glucosinolate biosynthesis and the glucosinolate-myrosinase system in plant defense[J/OL]. Agronomy, 2020, 10(11): 1786[2022-02-03] . doi: 10.3390/agronomy10111786.
[13]

HOPKINS R J, van DAM N M V, van LOON J J. Role of glucosinolates in insect-plant relationships and multitrophic interactions [J]. Annual Review Entomology, 2009, 54: 57 − 83.
[14]

SANTOLAMAZZA-CARBONE S, SOTELO T, VELASCO P, et al. Antibiotic properties of the glucosinolates of Brassica oleracea var. acephala similarly affect generalist and specialist larvae of two lepidopteran pests[J]. Journal of Pest Science, 89(1): 195 − 206.
[15]

BADENES-PEREZ F R, REICHELT M, GERSHENZON J, et al. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans [J]. Phytochemistry, 2013, 86: 36 − 43.
[16]

AUGUSTINE R, BISHT N C. Biotic elicitors and mechanical damage mod-ulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea [J]. Phytochemistry, 2015, 117(1): 43 − 50.
[17]

BORGES A, ABREU A C, FERREIRA C, et al. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens [J]. Journal of Food Science &Technology, 2015, 52(8): 4737 − 4748.
[18]

LAMOTTE O, JEANDROZ S. Plant responses to biotic/abiotic stresses: lessons from cell signaling[J/OL]. Frontiers in Plant Science 2017, 8: 1772[2022-02-03]. doi:10.3389/fpls.2017.01772.
[19]

SONTOWSKI R, GORRINGE N J, PENCS S, et al. Same difference? low and high glucosinolate Brassica rapa varieties show similar responses upon feeding by two specialist root herbivores[J/OL]. Frontiers in Plant Science, 2019, 10: 1451[2022-02-03]. doi: 10.3389/fpls.2019.01451.
[20]

MEWIS I, TOKUHISA J G, SCHULTA J C, et al. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways [J]. Phytochemistry, 2006, 67(22): 2450 − 2462.
[21]

KOORNNEEF M, ALONSO-BLANCO C, VREUGDENHIL D. Naturally occurring genetic variation in Arabidopsis thaliana [J]. Annual Review of Plant Biology, 2004, 55(1): 141 − 172.
[22]

KUHLMANN F, MULLER C. Independent responses to ultraviolet radiation and herbivore attack in Broccoli [J]. Journl of Experimental Botany, 2009, 60(12): 3467 − 3475.
[23]

PFALZ M, VOGEL H, KROYMANN J. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis [J]. The Plant Cell, 2009, 21(3): 985 − 999.
[24] 陈澄宇, 康志娇, 史雪岩, 等. 昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义[J]. 昆虫学报, 2015, 58(10): 1126 − 1139.

CHEN Dengyu, KAMNG Zhijiao, SHI Xueyan, et al. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects [J]. Acta Entomologica Sinica, 2015, 58(10): 1126 − 1139.
[25]

KRUMBEIN A, SCHONHOF I, SCHREINER M. Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa) [J]. Journal of Applied Botany &Food Quality, 2005, 79(3): 168 − 174.
[26]

ZHU Biao, YANG Jing, HE Yong, et al. Glucosinolate accumulation and related gene expression in pak choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in response to insecticide application [J]. Journal of Agricultural &Food Chemistry,, 2015, 63(44): 9683 − 9689.
[27]

BJÖRKMAN M, KLINGEN I, BIRCH A N, et al. Phytochemicals of Brassicaceae in plant protection and human health-Influences of climate, environment and agronomic practice [J]. Phytochemistry, 2011, 72(7): 538 − 556.
[28]

LIANG Ying, YU Youjian, SHEN X Piuping, et al. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis [J]. Plant Molecular Biology, 2015, 89(6): 629 − 646.
[29]

LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the \begin{document}$2^{- \Delta \Delta C_{t}} $\end{document} method [J]. Methods, 2001, 25: 402 − 408.
[30]

KIM J H, DURRETT T P, LAST R L, et al. Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2 [J]. Plant Molecular Biology, 2004, 54(5): 671 − 682.
[31]

MALITSKY S, BLUM E, LESS H, et al. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators [J]. Plant Physiology, 2008, 148(4): 2021 − 2049.
[32]

MÜLLER R, de VOS M, SUN J Y, et al. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores [J]. Journal of Chemical Ecology, 2010, 36(8): 905 − 913.
[33]

ZHUROV V, NAVARRO M, BRUINSMA K A, et al. Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite [J]. Plant Physiology, 2014, 164(1): 384 − 399.
[34]

SANTOLAMAZZA-CARBONE S, SOTELO T, VELASCO P, et al. Antibiotic properties of the glucosinolates of Brassica oleracea var. acephala similarly affect generalist and specialist larvae of two lepidopteran pests [J]. Journal of Pest Science, 2016, 89(1): 195 − 206.
[35]

KLIEBENSTEIN D J, GERSHENZON J, MITCHELL-OLDS T. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds [J]. Genetics, 2001, 159(1): 359 − 370.
[36]

KLIEBENSTEIN D J, KROYMANN J, BROWN P, et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation [J]. Plant Physiology, 2001, 126(2): 811 − 825.
[37]

KLIEBENSTEIN D J, LAMBRIX V M, REICHELT M, et al. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis [J]. The Plant Cell, 2001, 13(3): 681 − 693.
[38]

ZÜST T, HEICHINGER C, GROSSNIKLAUS U, et al. Natural enemies drive geographic variation in plant defenses [J]. Science, 2012, 338(6103): 116 − 119.
[39]

KUMAR P, AUGUSTINE R, SINGH A K, et al. Feeding behaviour of generalist pests on Brassica juncea: implication for manipulation of glucosinolate biosynthesis pathway for enhanced resistance [J]. Plant,Cell and Environment, 2017, 40(10): 2109 − 2120.
[40]

LIU Z, WANG H, XIE J, et al. The roles of cruciferae glucosinolates in disease and pest resistance[J/OL]. Plants, 2021, 10(6): 1097[2022-02-03]. doi:10.3390/plants10061097.
[41]

HECKEL D G. Insect detoxification and sequestration strategies [J]. Annual Plant Reviews, 2014, 47: 77 − 114.
[42]

GIRAUDO M, HILLIOU F, FRICAUX T, et al. Cytochrome P450s from the fall armyworm(Spodoptera frugiperda): response to plant allelochemicals and pesticides [J]. Insect Molecular Biology, 2015, 24(1): 115 − 128.
[43]

VANHAELEN N, HAUBRUGE E, LOGNAY G, et al. Hoverfly glutathione S-transferases and effects of Brassicaceae secondary metabolites [J]. Pesticide Biochemestry Physiology, 2001, 71(3): 170 − 177.