[1] THOMAS C D, CAMERON A, GREEN R E, et al. Extinction risk from climate change [J]. Nature, 2004, 427(6970): 145 − 148.
[2] BEAUMONT L J, HUGHES L, POULSEN M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions [J]. Ecological Modelling, 2005, 186(2): 251 − 270.
[3] PATIISON R R, MACK R N. Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials [J]. Global Change Biology, 2008, 14(4): 813 − 826.
[4] 邓阳川, 向丽, 汤欢, 等. 基于GMPGIS的杜仲全球产地生态适宜性分析[J]. 世界科学技术—中医药现代化, 2019, 21(4): 755 − 763.

DENG Yangchuan, XIANG Li, TANG Huan, et al. Suitability analysis of Eucommia ulmoides global ecological adaptability area based on GMPGIS [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2019, 21(4): 755 − 763.
[5] 叶芸, 孔德英, 王振华, 等. 基于CLIMEX的西方散白蚁在中国潜在适生区分析[J]. 湖北农业科学, 2016, 55(15): 3894 − 3896.

YE Yun, KONG Deying, WANG Zhenhua, et al. The potential geographical distribution of Reticulitermes hesperus in China based on CLIMEX [J]. Hubei Agricultural Science, 2016, 55(15): 3894 − 3896.
[6] 杨芙蓉, 张琴, 孙成忠, 等. 蒙古黄芪潜在分布区预测的多模型比较[J]. 植物科学学报, 2019, 37(2): 136 − 143.

YANG Furong, ZHANG Qin, SUN Chengzhong, et al. Comparative evaluation of multiple models for predicting the potential distribution areas of Astragalus membranaceus var. mongholicus [J]. Journal of Plant Science, 2019, 37(2): 136 − 143.
[7] 冉巧, 卫海燕, 赵泽芳, 等. 气候变化对孑遗植物银杉的潜在分布及生境破碎度的影响[J]. 生态学报, 2019, 39(7): 2481 − 2493.

RAN Qiao, WEI Haiyan, ZHAO Zefang, et al. Impact of climate change on the potential distribution and habitat fragmentation of the relict plant Cathaya argyrophylla Chun et Kuang [J]. Acta Ecologica Sinica, 2019, 39(7): 2481 − 2493.
[8] 张伟萍, 胡云云, 李智华, 等. 气候变化情景下祁连圆柏在青海省的适宜分布区预测[J]. 应用生态学报, 2021, 32(7): 2514 − 2524.

ZHANG Weiping, HU Yunyun, LI Zhihua, et al. Predicting suitable distribution areas of Juniperus przewalskii in Qinghai Province under climate change scenarios [J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2514 − 2524.
[9] 牛若恺, 高润红, 侯艳青, 等. 气候变化下沙冬青适宜分布区预测[J]. 西北林学院学报, 2021, 36(1): 102 − 107.

NIU Ruokai, GAO Runhong, HOU Yanqing, et al. Prediction of the geographic distribution of Ammopiptanthus mongolicus under climate change [J]. Journal of Northwest College of Forestry, 2021, 36(1): 102 − 107.
[10] 焦树仁. 辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施[J]. 林业科学, 2001, 37(2): 131 − 138.

JIAO Shuren. Reasons and prevention measures for early weakness of forest in Zhanggutai, Liaoning Province [J]. Scientia Silvae Sinicae, 2001, 37(2): 131 − 138.
[11]

ZHU Jiaojun, FAN Zhiping, ZENG Dehui, et al. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land [J]. Journal of Forestry Research, 2003, 14(2): 103 − 111.
[12] 刘亚玲, 信忠保, 李宗善, 等. 河北坝上樟子松人工林径向生长及其对气候因素的响应[J]. 生态学报, 2022, 42(5): 1830 − 1840.

LIU Yaling, XIN Zhongbao, LI Zongshan, et al. Response of radial growth of Pinus sylvestris var. mongolica to climate factors in Bashang area of Hebei Province [J]. Acta Ecologica Sinica, 2022, 42(5): 1830 − 1840.
[13] 王晓春, 宋来萍, 张远东. 大兴安岭北部樟子松树木生长与气候因子的关系[J]. 植物生态学报, 2011, 35(3): 294 − 302.

WANG Xiaochun, SONG Laiping, ZHANG Yuandong. Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’ an Mountains, China [J]. Chinese Journal of Plant Ecology, 2011, 35(3): 294 − 302.
[14] 徐静, 郭滨德, 孙洪志. 帽儿山地区不同种源樟子松树轮对气候因子的响应[J]. 林业科学研究, 2016, 29(4): 581 − 586.

XU Jing, GUO Bingde, SUN Hongzhi. Tree ring response of scots pine provenances to climate factors at Maoershan, northeastern China [J]. Forestry Research, 2016, 29(4): 581 − 586.
[15] 李俊霞, 白学平, 张先亮, 等. 大兴安岭林区南、北部天然樟子松生长对气候变化的响应差异[J]. 生态学报, 2017, 37(21): 7232 − 7241.

LI Junxia, BAI Xueping, ZHANG Xianliang, et al. Different responses of natural Pinus sylvestris var. mongolica growth to climate change in southern and northern forested areas in the Great Xing’ an Mountains [J]. Acta Ecologica Sinica, 2017, 37(21): 7232 − 7241.
[16] 尚建勋, 时忠杰, 高吉喜, 等. 呼伦贝尔沙地樟子松年轮生长对气候变化的响应[J]. 生态学报, 2012, 32(4): 1177 − 1184.

SHANG Jianxun, SHI Zhongjie, GAO Jixi, et al. Response of tree-ring width of Pinus sylvestris var. mongolica to climate change in Hulunbuir Sand Land, China [J]. Acta Ecologica Sinica, 2012, 32(4): 1177 − 1184.
[17] 雷帅, 张劲松, 孟平, 等. 中国北部不同地点樟子松人工林径向生长对气候响应的差异[J]. 生态学报, 2020, 40(13): 4479 − 4492.

LEI Shuai, ZHANG Jinsong, MENG Ping, et al. Differences in tree-ring growth response of Pinus sylvestris var. mongolica to climatic variation at different locations in northern China [J]. Acta Ecologica Sinica, 2020, 40(13): 4479 − 4492.
[18]

LI Suyuan, MIAO Lijuan, JIANG Zihong, et al. Projected drought conditions in northwest China with CMIP6 models under combined SSPs and RCPs for 2015−2099 [J]. Advances in Climate Change Research, 2020, 11: 210 − 217.
[19]

YI Yujun, CHENG Xi, YANG Zhifeng, et al. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China [J]. Ecological Engineering, 2016, 92: 260 − 269.
[20]

RONG Zhanlei, ZHAO Chuanyan, LIU Junjie, et al. Modeling the effect of climate change on the potential distribution of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains[J/OL]. Forests, 2019, 10(1): 62[2022-06-03]. doi: 10.3390/f10010062.
[21] 赵光华, 樊保国. 末次间冰期以来濒危植物藤枣适生区空间迁移预测[J]. 西南农业学报, 2021, 34(1): 174 − 182.

ZHAO Guanghua, FAN Baoguo. Prediction on spatial migration of suitable distribution of Eleutharrhena macrocarpa (Diels) forman since last inter glacial [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(1): 174 − 182.
[22] 李安, 李良涛, 高萌萌, 等. 基于MaxEnt模型和气候变化情景入侵种黄顶菊在中国的分布区预测[J]. 农学学报, 2020, 10(1): 60 − 67.

LI An, LI Liangtao, GAO Mengmeng, et al. Distribution prediction of invasive species Flaveria bidentis in China: based on MaxEnt Model and climate change scenario [J]. Journal of Agriculture, 2020, 10(1): 60 − 67.
[23] 刘佳琪, 魏广阔, 史常青, 等. 基于MaxEnt模型的北方抗旱造林树种适宜区分布[J]. 北京林业大学学报, 2022, 44(7): 63 − 77.

LIU Jiaqi, WEI Guangkuo, SHI Changqing, et al. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model [J]. Journal of Beijing Forestry University, 2022, 44(7): 63 − 77.
[24] 赵光华, 崔馨月, 王智, 等. 气候变化背景下我国酸枣潜在适生区预测[J]. 林业科学, 2021, 57(6): 158 − 168.

ZHAO Guanghua, CUI Xinyue, WANG Zhi, et al. Prediction of potential distribution of Ziziphus jujuba var. spinosa in China under context of climate change [J]. Scientia Silvae Sinicae, 2021, 57(6): 158 − 168.
[25] 赵晓彬. 榆林沙区樟子松造林技术研究[D]. 杨凌: 西北农林科技大学, 2007.

ZHAO Xiaobin. Study on Afforestation Techniques of Pinus Sylvestris var. mongolica in Yunlin Sandy Land[D]. Yangling: Northwest A&F University, 2007.
[26] 戴继先, 杨国林, 杨战阳. 治沙造林先锋树种——樟子松造林技术研究[J]. 林业实用技术, 2003(10): 5 − 7.

DAI Jixian, YANG Guolin, YANG Zhanyang. Sand control forestation pioneer tree species: study on afforestation technology of Pinus sylvestris var.mongolica [J]. Practical Forestry of Technology, 2003(10): 5 − 7.
[27] 张日升, 贾树海, 张国剑, 等. 基于GIS的樟子松种植适宜性评价研究[J]. 土壤通报, 2019, 50(3): 555 − 561.

ZHANG Risheng, JIA Shuhai, ZHANG Guojian, et al. Suitability evaluation for Pinus sylvestris var. mongolica planting based on GIS [J]. Chinese Journal of Soil Science, 2019, 50(3): 555 − 561.
[28] 吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 2004, 15(12): 2225 − 2228.

WU Xiangyun, JIANG Fengqi, LI Xiaodan, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land [J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2225 − 2228.
[29]

CHEN Xiongwen. Modeling the effects of global climatic change at the ecotone of boreal larch forest and temperate forest in northeast China [J]. Climatic Change, 2012, 55(1/2): 77 − 97.