[1] XING Mengyun, CAO Yunlin, GRIERSON D, et al. The chemistry, distribution, and metabolic modifications of fruit flavonols [J]. Fruit Research, 2021, 1(1): 1−11.
[2] ZHUANG Weibing, LI Yuhang, SHU Xiaochun, et al. The classification, molecular structure and biological biosynthesis of flavonoids, and their roles in biotic and abiotic stresses[J/OL]. Molecules, 2023, 28(8): 3599[2025-08-01]. DOI: 10.3390/molecules28083599.
[3] GERVASI T, CALDERARO A, BARRECA D, et al. Biotechnological applications and health-promoting properties of flavonols: an updated view[J/OL]. International Journal of Molecular Sciences, 2022, 23(3): 1710[2025-08-01]. DOI: 10.3390/ijms23031710.
[4] WEN Weiwei, ALSEEKH S, FERNIE A R. Conservation and diversification of flavonoid metabolism in the plant Kingdom [J]. Current Opinion in Plant Biology, 2020, 55: 100−108.
[5] LIU Weixin, FENG Yi, YU Suhang, et al. The flavonoid biosynthesis network in plants[J/OL]. International Journal of Molecular Sciences, 2021, 22(23): 12824[2025-08-01]. DOI: 10.3390/ijms222312824.
[6] NEUGART S, FIOL M, SCHREINER M, et al. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) [J]. Journal of Agricultural and Food Chemistry, 2014, 62(18): 4054−4062.
[7] PARMENTER B H, THOMPSON A S, BONDONNO N P, et al. High diversity of dietary flavonoid intake is associated with a lower risk of all-cause mortality and major chronic diseases [J]. Nature Food, 2025, 6(7): 668−680.
[8] SHIONO M, MATSUGAKI N, TAKEDA K. Structure of the blue cornflower pigment[J/OL]. Nature, 2005, 436(7052): 791[2025-08-01]. DOI: 10.1038/436791a.
[9] LIU Qingqing, ZHANG Dasheng, LIU Fengluan, et al. Quercetin-derivatives painting the yellow petals of American lotus (Nelumbo lutea) and enzymatic basis for their accumulation [J]. Horticultural Plant Journal, 2023, 9(1): 169−182.
[10] CAI Caiping, ZHOU Fan, LI Weixi, et al. The R2R3-MYB transcription factor GaPC controls petal coloration in cotton [J]. The Crop Journal, 2023, 11(5): 1319−1330.
[11] PARK S, KIM D H, YANG J H, et al. Increased flavonol levels in tobacco expressing AcFLS affect flower color and root growth[J/OL]. International Journal of Molecular Sciences, 2020, 21(3): 1011[2025-08-01]. DOI: 10.3390/ijms21031011.
[12] GRUNEWALD W, de SMET I, LEWIS D R, et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1554−1559.
[13] KUHN B M, ERRAFI S, BUCHER R, et al. 7-rhamnosylated flavonols modulate homeostasis of the plant hormone auxin and affect plant development [J]. Journal of Biological Chemistry, 2016, 291(10): 5385−5395.
[14] STRACKE R, FAVORY J J, GRUBER H, et al. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation [J]. Plant, Cell & Environment, 2010, 33(1): 88−103.
[15] MATTILA H, KHOROBRYKH S, TYYSTJÄRVI E. Flavonols do not affect aphid load in green or senescing birch leaves but coincide with a decrease in Photosystem Ⅱ functionality[J/OL]. Biology Open, 2024, 13(7): bio060325[2025-08-01]. DOI: 10.1242/bio.060325.
[16] PANCHE A N, DIWAN A D, CHANDRA S R. Flavonoids: an overview[J/OL]. Journal of Nutritional Science, 2016, 5: e47[2025-08-01]. DOI: 10.1017/jns.2016.41.
[17] FATIMA N, BAQRI S S R, BHATTACHARYA A, et al. Role of flavonoids as epigenetic modulators in cancer prevention and therapy[J/OL]. Frontiers in Genetics, 2021, 12: 758733[2025-08-01]. DOI: 10.3389/fgene.2021.758733.
[18] CHU Tianjiao, WANG Yuman, WANG Shihao, et al. Kaempferol regulating macrophage foaming and atherosclerosis through Piezo1-mediated MAPK/NF-κB and Nrf2/HO-1 signaling pathway [J]. Journal of Advanced Research, 2025, 75: 635−650.
[19] CORTÉS-MARTÍN A, SELMA M V, TOMÁS-BARBERÁN F A, et al. Where to look into the puzzle of polyphenols and health? the postbiotics and gut microbiota associated with human metabotypes[J/OL]. Molecular Nutrition & Food Research, 2020, 64(9): 1900952[2025-08-01]. DOI: 10.1002/mnfr.201900952.
[20] VOGT T. Phenylpropanoid biosynthesis [J]. Molecular Plant, 2010, 3(1): 2−20.
[21] ACHNINE L, BLANCAFLOR E B, RASMUSSEN S, et al. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis [J]. The Plant Cell, 2004, 16(11): 3098−3109.
[22] WINKEL-SHIRLEY B. Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology [J]. Plant Physiology, 2001, 126(2): 485−493.
[23] PETRONI K, TONELLI C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs [J]. Plant Science, 2011, 181(3): 219−229.
[24] RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105−2110.
[25] ROSINSKI J A, ATCHLEY W R. Molecular evolution of the myb family of transcription factors: evidence for polyphyletic origin [J]. Journal of Molecular Evolution, 1998, 46(1): 74−83.
[26] CAO Yunlin, MEI Yuyang, ZHANG Ruining, et al. Transcriptional regulation of flavonol biosynthesis in plants[J/OL]. Horticulture Research, 2024, 11(4): uhae043[2025-08-01]. DOI: 10.1093/hr/uhae043.
[27] YANG W T, BAE K D, LEE S W, et al. The MYB-CC Transcription Factor PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) functions in phosphate homeostasis and affects salt stress tolerance in rice[J/OL]. Plants, 2024, 13(5): 637[2025-08-01]. DOI: 10.3390/plants13050637.
[28] de LANGE T. SHELTERIN: the protein complex that shapes and safeguards human telomeres [J]. Genes & Development, 2005, 19(18): 2100−2110.
[29] WU Yun, WEN Jing, XIA Yiping, et al. Evolution and functional diversification of R2R3-MYB transcription factors in plants[J/OL]. Horticulture Research, 2022, 9: uhac058[2025-08-01]. DOI: 10.1093/hr/uhac058.
[30] FENG Guanqiao, BURLEIGH J G, BRAUN E L, et al. Evolution of the 3R-MYB gene family in plants [J]. Genome Biology and Evolution, 2017, 9(4): 1013−1029.
[31] DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis [J]. Trends in Plant Science, 2010, 15(10): 573−581.
[32] NAIK J, RAJPUT R, SINGH S, et al. Heat-responsive MaHSF11 transcriptional activator positively regulates flavonol biosynthesis and flavonoid B-ring hydroxylation in banana (Musa acuminata)[J/OL]. The Plant Journal, 2025, 121(5): e70084[2025-08-01]. DOI: 10.1111/tpj.70084.
[33] SAXENA S, PAL L, NAIK J, et al. The R2R3-MYB-SG7 transcription factor CaMYB39 orchestrates surface phenylpropanoid metabolism and pathogen resistance in chickpea [J]. New Phytologist, 2023, 238(2): 798−816.
[34] ZHONG Chunmei, TANG Yi, PANG Bin, et al. The R2R3-MYB transcription factor GhMYB1a regulates flavonol and anthocyanin accumulation in Gerbera hybrida[J/OL]. Horticulture Research, 2020, 7: 78[2025-08-01]. DOI: 10.1038/s41438-020-0296-2.
[35] LI Yaohua, RAN Lingfang, MO Tong, et al. Yellow Petal locus GaYP promotes flavonol biosynthesis and yellow coloration in petals of Asiatic cotton (Gossypium arboreum)[J/OL]. Theoretical and Applied Genetics, 2023, 136(5): 98[2025-08-01]. DOI: 10.1007/s00122-023-04329-7.
[36] ZHANG Yue, DUAN Jingjing, WANG Qiaoyun, et al. The Paeonia qiui R2R3-MYB transcription factor PqMYBF1 positively regulates flavonol accumulation[J/OL]. Plants, 2023, 12(7): 1427[2025-08-01]. DOI: 10.3390/plants12071427.
[37] YANG Jingwen, WU Xi, AUCAPIÑA C B, et al. NtMYB12 requires for competition between flavonol and (pro)anthocyanin biosynthesis in Narcissus tazetta tepals[J/OL]. Molecular Horticulture, 2023, 3(1): 2[2025-08-01]. DOI: 10.1186/s43897-023-00050-7.
[38] 吴立璇, 周平, 范雨昕, 等. 中国水仙NtMYB8的分离及功能研究[J]. 园艺学报, 2021, 48(10): 1895−1906.

WU Lixuan, ZHOU Ping, FAN Yuxin, et al. Cloning and functional analysis of NtMYB8 in Narcissus tazetta var. chinensis [J]. Acta Horticulturae Sinica, 2021, 48(10): 1895−1906.
[39]

BALLESTER A R, MOLTHOFF J, de VOS R, et al. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factors SlMYB12 leads to pink tomato fruit color [J]. Plant Physiology, 2010, 152(1): 71−84.
[40]

YUE Maolan, JIANG Leiyu, ZHANG Nating, et al. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes[J/OL]. Frontiers in Plant Science, 2023, 14: 1145670[2025-08-01]. DOI: 10.3389/fpls.2023.1145670.
[41]

SONG Zhaopeng, LUO Yong, WANG Weifeng, et al. NtMYB12 positively regulates flavonol biosynthesis and enhances tolerance to low Pi stress in Nicotiana tabacum[J/OL]. Frontiers in Plant Science, 2019, 10: 1683[2025-08-01]. DOI: 10.3389/fpls.2019.01683.
[42]

SONG Zhongbang, ZHAO Lu, MA Wenna, et al. Ethylene inhibits ABA-induced stomatal closure via regulating NtMYB184-mediated flavonol biosynthesis in tobacco [J]. Journal of Experimental Botany, 2023, 74(21): 6735−6748.
[43]

CZEMMEL S, STRACKE R, WEISSHAAR B, et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries [J]. Plant Physiology, 2009, 151(3): 1513−1530.
[44]

CZEMMEL S, HÖLL J, LOYOLA R, et al. Transcriptome-wide identification of novel UV-B- and light modulated flavonol pathway genes controlled by VviMYBF1[J/OL]. Frontiers in Plant Science, 2017, 8: 1084[2025-08-01]. DOI: 10.3389/fpls.2017.01084.
[45]

YANG Feng, WANG Tao, GUO Qiaosheng, et al. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana [J]. Plant Cell Reports, 2023, 42(4): 791−803.
[46]

ZHAO Xuecheng, LI Ping, ZUO Hao, et al. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis) [J]. The Plant Journal, 2023, 115(4): 1051−1070.
[47]

CAO Yunlin, XIE Linfeng, MA Yingyue, et al. PpMYB15 and PpMYBF1 transcription factors are involved in regulating flavonol biosynthesis in peach fruit [J]. Journal of Agricultural and Food Chemistry, 2019, 67(2): 644−652.
[48]

ZHAI Rui, WANG Zhimin, ZHANG Shiwei, et al. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd. ) [J]. Journal of Experimental Botany, 2016, 67(5): 1275−1284.
[49]

LI Hua, LI Yu, YU Jiaxuan, et al. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple[J/OL]. Horticulture Research, 2020, 7: 19[2025-08-01]. DOI: 10.1038/s41438-020-0238-z.
[50]

ZHANG Xueying, HE Yuqing, LI Linying, et al. Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen [J]. Journal of Experimental Botany, 2021, 72(12): 4319−4332.
[51]

HUANG Wenjun, LÜ Haiyan, WANG Ying. Functional characterization of a novel R2R3-MYB transcription factor modulating the flavonoid biosynthetic pathway from Epimedium sagittatum[J/OL]. Frontiers in Plant Science, 2017, 8: 1274[2025-08-01]. DOI: 10.3389/fpls.2017.01274.
[52] 王子玥, 杨锋, 王红燕, 等. 三叶青ThMYBPAR基因的克隆及组织差异表达分析[J]. 浙江农林大学学报, 2025, 42(2): 273−280.

WANG Ziyue, YANG Feng, WANG Hongyan, et al. Cloning and analysis of tissue-specific expression patterns of ThMYBPAR gene in Tetrastigma hemsleyanum [J]. Journal of Zhejiang A&F University, 2025, 42(2): 273−280.
[53]

LU Jinkai, TONG Peixi, XU Yuan, et al. SA-responsive transcription factor GbMYB36 promotes flavonol accumulation in Ginkgo biloba[J/OL]. Forestry Research, 2023, 3: 19[2025-08-01]. DOI: 10.48130/FR-2023-0019.
[54]

CHEN Xiaoshan, WU Ying, YU Zhanghong, et al. BcMYB111 responds to BcCBF2 and induces flavonol biosynthesis to enhance tolerance under cold stress in non-heading Chinese cabbage[J]. International Journal of Molecular Sciences, 2023, 24(10): 8670[2025-08-01]. DOI: 10.3390/ijms24108670.
[55]

CHEN Cheng, ZHANG Kaixuan, KHURSHID M, et al. MYB transcription repressors regulate plant secondary metabolism [J]. Critical Reviews in Plant Sciences, 2019, 38(3): 159−170.
[56]

STRACKE R, ISHIHARA H, HUEP G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50(4): 660−677.
[57]

WANG Feibing, KONG Weili, WONG G, et al. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana [J]. Molecular Genetics and Genomics, 2016, 291(4): 1545−1559.
[58]

PARK N I, LI Xiaohua, THWE A A, et al. Enhancement of rutin in Fagopyrum esculentum hairy root cultures by the Arabidopsis transcription factor AtMYB12 [J]. Biotechnology Letters, 2012, 34(3): 577−583.
[59]

DELUC L, BARRIEU F, MARCHIVE C, et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway [J]. Plant Physiology, 2006, 140(2): 499−511.
[60]

BLANCO E, SABETTA W, DANZI D, et al. Isolation and characterization of the flavonol regulator CcMYB12 from the globe artichoke [Cynara cardunculus var. scolymus (L. ) Fiori][J/OL]. Frontiers in Plant Science, 2018, 9: 941[2025-08-01]. DOI: 10.3389/fpls.2018.00941.
[61]

SHI Yufeng, LU Taoran, LAI Sanyan, et al. Rosa rugosa R2R3-MYB transcription factors RrMYB12 and RrMYB111 regulate the accumulation of flavonols and anthocyanins[J/OL]. Frontiers in Plant Science, 2024, 15: 1477278[2025-08-01]. DOI: 10.3389/fpls.2024.1477278.
[62]

XU Zibo, LI Jingwen, SONG Xue, et al. Overexpression of the R2R3-MYB transcription factor GmMYB3a enhances isoflavone accumulation in soybean[J/OL]. Physiologia Plantarum, 2025, 177(1): e70120[2025-08-01]. DOI: 10.1111/ppl.70120.
[63]

LIU Yitian, ZHANG Shengrui, LI Jing, et al. An R2R3-type MYB transcription factor, GmMYB77, negatively regulates isoflavone accumulation in soybean [Glycine max (L. ) Merr.] [J]. Plant Biotechnology Journal, 2025, 23(3): 824−838.
[64]

YAN Junhui, WANG Biao, ZHONG Yunpeng, et al. The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis [J]. Plant Molecular Biology, 2015, 89(1): 35−48.
[65]

RAMSAY N A, GLOVER B J. MYB-Bhlh-WD40 protein complex and the evolution of cellular diversity [J]. Trends in Plant Science, 2005, 10(2): 63−70.
[66]

BOVY A, de VOS R, KEMPER M, et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1 [J]. The Plant Cell, 2002, 14(10): 2509−2526.
[67]

DENG Heng, WU Mengbo, WU Yi, et al. SlMYC2-SlMYB12 module orchestrates a hierarchical transcriptional cascade that regulates fruit flavonoid metabolism in tomato [J]. Plant Biotechnology Journal, 2025, 23(2): 477−479.
[68]

HUANG Y F, VIALET S, GUIRAUD J L, et al. A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry [J]. New Phytologist, 2014, 201(3): 795−809.
[69]

WANG Zhong, LUO Zhaopeng, LIU Yongjun, et al. Molecular cloning and functional characterization of NtWRKY11b in promoting the biosynthesis of flavonols in Nicotiana tabacum[J/OL]. Plant Science, 2021, 304: 110799[2025-08-01]. DOI: 10.1016/j.plantsci.2020.110799.
[70]

LIU Sian, ZHANG Hanyue, MENG Zhaolong, et al. The LncNAT11-MYB11-F3′H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba [J]. Journal of Experimental Botany, 2025, 76(4): 1179−1201.
[71]

ZHAO Xuecheng, ZENG Xiangsheng, LIN Ning, et al. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network[J/OL]. Horticulture Research, 2021, 8: 110[2025-08-01]. DOI: 10.1038/s41438-021-00545-8.
[72] 刘佳欣, 刘慧子, 石晶静, 等. 白桦MYB基因响应激素及盐旱处理的表达研究[J]. 植物研究, 2020, 40(5): 743−750.

LIU Jiaxin, LIU Huizi, SHI Jingjing, et al. Expression of MYB genes of birch in response to hormones, salt and drought [J]. Bulletin of Botanical Research, 2020, 40(5): 743−750.
[73]

LIU Moyang, SUN Wenjun, MA Zhaotang, et al. Integrated network analyses identify MYB4R1 neofunctio-nalization in the UV-B adaptation of Tartary buckwheat[J/OL]. Plant Communications, 2022, 3(6): 100414[2025-08-01]. DOI: 10.1016/j.xplc.2022.100414.
[74]

BHATIA C, PANDEY A, GADDAM S R, et al. Low temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2018, 59(10): 2099−2112.
[75] 孙亚辉, 姜天华, 高康, 等. 野菊黄酮醇合成途径调控因子CiMYB3基因启动子的克隆与表达分析[J]. 现代园艺, 2024(11): 64−66, 74, 162.

SUN Yahui, JIANG Tianhua, GAO Kang, et al. Cloning and expression analysis of CiMYB3 gene promoter, a regulator of flavonol synthesis pathway in Chrysanthemum indicum L. [J]. Contemporary Horticulture, 2024(11): 64−66, 74, 162.
[76]

QI Lanting, SUN Huigai, TIAN Chang, et al. The AmMYB35-AmFLS module mediates the accumulation of flavonol induced by drought stress in Astragalus membranaceus[J/OL]. Food Bioscience, 2025, 68: 106541[2025-08-01]. DOI: 10.1016/j.fbio.2025.106541.
[77]

LI Baozhu, FAN Ruonan, GUO Siyi, et al. The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis[J/OL]. Environmental and Experimental Botany, 2019, 166: 103807[2025-08-01]. DOI: 10.1016/j.envexpbot.2019.103807.
[78]

ZHANG Lishuang, SUN Yugang, JI Jinqiang, et al. Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa [J]. The Crop Journal, 2023, 11(4): 1218−1229.