[1] Food and Agriculture Organization of the United Nations. Global Status of Salt-affected Soils-Main Report [R/OL]. Rome: Food and Agriculture Organization of the United Nations, 2024[2025-08-18]. DOI:10.4060/cd3044en.
[2] van ZELM E, ZHANG Yanxia, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71: 403−433.
[3] ZHOU Huapeng, SHI Haifan, YANG Yongqing, et al. Insights into plant salt stress signaling and tolerance [J]. Journal of Genetics and Genomics, 2024, 51(1): 16−34.
[4] 焦明翠, 蔡立格, 魏健, 等. 盐胁迫的生理危害与植物的适应机制研究进展[J]. 长春师范大学学报, 2023, 42(6): 125−132.

JIAO Mingcui, CAI Lige, WEI Jian, et al. Research progress on the physiological harms of salt stress and the adaptation mechanism of plants [J]. Journal of Changchun Normal University, 2023, 42(6): 125−132.
[5]

ZHU Zhihui, ZHOU Yuqing, LIU Xiuyue, et al. Integrated transcriptomic and metabolomic analyses uncover the key pathways of Limonium bicolor in response to salt stress [J]. Plant Biotechnology Journal, 2025, 23(3): 715−730.
[6]

MAURYA V, SINGH N, SHARMA I, et al. Effect of melatonin in regulating salt stress responses in plants[M]// SHARMA A, AHAMMED G J. Melatonin in Plants: Role in Plant Growth, Development, and Stress Response. Singapore: Springer Nature Singapore, 2024: 109−139.
[7]

KOLUPAEV Y E, YASTREB T O. Role of jasmonate and jasmonate signaling components in plant adaptation to salt stress[M]//YASTREB T O. Regulation of Adaptive Responses in Plants. New York: Nova Science Publishers, 2024: 161−207.
[8]

MIR R A, ARYENDU A, SOMASUNDARAM R. Salicylic acid and salt stress tolerance in plants: a review [J]. Journal of Stress Physiology and Biochemistry, 2021, 17(3): 32−50.
[9]

GHASSEMI-GOLEZANI K, SAMEA-ANDABJADID S. Cytokinin signaling in plants under salt stress[M]// AFTAB T. Auxins, Cytokinins and Gibberellins Signaling in Plants. Cham: Springer International Publishing, 2022: 189−212.
[10]

SONG Xin, ZHANG Miao, WANG Tingting, et al. Polyploidization leads to salt stress resilience via ethylene signaling in Citrus plants [J]. New Phytologist, 2025, 246(1): 176−191.
[11]

BASHARAT S, SAEED W, LIU Pingwu, et al. Abscisic acid mediated salinity stress tolerance in crops[J/OL]. Plant Hormones, 2025, 1(1): e015[2025-07-30]. DOI: 10.48130/ph-0025-0014.
[12]

YANG Xinhui, LIU Zisheng, CHEN Jun, et al. PP2C-mediated ABA signaling pathway underlies exogenous abscisic acid-induced enhancement of saline-alkaline tolerance in potato (Solanum tuberosum L. )[J/OL]. Plants, 2025, 14(13): 1921[2025-07-30]. DOI: 10.3390/plants14131921.
[13] 张云霞, 石勇, 王瑞刚, 等. 初始盐胁迫下ABA与CaM对胡杨叶片气体交换的调控[J]. 林业科学, 2008, 44(1): 57−64.

ZHANG Yunxia, SHI Yong, WANG Ruigang, et al. Effects of ABA and CaM on leaf gas exchange of Populus euphratica in the process of initial salinity [J]. Scientia Silvae Sinicae, 2008, 44(1): 57−64.
[14] 邓昌哲, 安飞飞, 李开绵, 等. 外源ABA及其抑制剂钨酸钠对木薯块根类胡萝卜素相关基因和蛋白的影响[J]. 生物技术通报, 2017, 33(11): 76−83.

DENG Changzhe, AN Feifei, LI Kaimian, et al. Effects of ABA and its synthesis inhibitor sodium tungstate on carotenoid associated genes and enzymes of cassava tuber root [J]. Biotechnology Bulletin, 2017, 33(11): 76−83.
[15]

ZHANG Qitong, ZHANG Lili, GENG Biao, et al. Interactive effects of abscisic acid and nitric oxide on chilling resistance and active oxygen metabolism in peach fruit during cold storage [J]. Journal of the Science of Food and Agriculture, 2019, 99(7): 3367−3380.
[16]

LI Wenfang, MAO Juan, SU Jing, et al. Exogenous ABA and its inhibitor regulate flower bud induction of apple cv. ‘Nagafu No. 2’ grafted on different rootstocks [J]. Trees, 2021, 35(2): 609−620.
[17]

SAINI L K, SINGH N, PANDEY G K. Plant protein phosphatase 2C: critical negative regulator of ABA signaling[M]//PANDEY G K. Protein Phosphatases and Stress Management in Plants. Cham: Springer International Publishing, 2020: 83−102.
[18]

HEWAGE K A H, YANG Jingfang, WANG Di, et al. Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture[J/OL]. Advanced Science, 2020, 7(18): 2001265[2025-07-30]. DOI: 10.1002/advs.202001265.
[19]

HOANG X L T, NHI D N H, THU N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses [J]. Current Genomics, 2017, 18(6): 483−497.
[20]

ZHENG Yuan, CHEN Zhaojin, MA Liang, et al. The ubiquitin E3 ligase RHA2b promotes degradation of MYB30 in abscisic acid signaling [J]. Plant Physiology, 2018, 178(1): 428−440.
[21]

NIE Kaili, ZHAO Hongyun, WANG Xiaopei, et al. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination [J]. Journal of Integrative Plant Biology, 2022, 64(4): 930−941.
[22]

ZHAN Qidi, SHEN Jialu, NIE Kaili, et al. MIW1 participates in ABA signaling through the regulation of MYB30 in Arabidopsis[J/OL]. Plant Science, 2023, 332: 111717[2025-07-30]. DOI: 10.1016/j.plantsci.2023.111717.
[23] 刘淼. 基于转录组学的芙蓉菊与甘菊杂交后代耐盐机制研究[D]. 北京: 北京林业大学, 2022.

LIU Miao. Study of the Salt Tolerance Mechanism in the Hybrids of Crossostephium chinense and Chrysanthemum lavandulifolium Based on Transcriptomic Analyses [D]. Beijing: Beijing Forestry University, 2022.
[24] 陈俊通. 广义菊属远缘杂交障碍及耐盐种质创制的研究[D]. 北京: 北京林业大学, 2019.

CHEN Juntong. Exploration on Reproductive Barriers in Distant Hybridization and Creation of Salt-tolerant Germplasms within Chrysanthemum in Broad Sense [D]. Beijing: Beijing Forestry University, 2019.
[25]

WANG Yuxin, LIU Miao, GUO Ziyu, et al. Comparative physiological and transcriptome analysis of Crossostephium chinense reveals its molecular mechanisms of salt tolerance[J/OL]. International Journal of Molecular Sciences, 2023, 24(23): 16812[2025-07-30]. DOI: 10.3390/ijms242316812.
[26]

ZHAO Jing, LI Gang, YI Guoxiang, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules [J]. Analytica Chimica Acta, 2006, 571(1): 79−85.
[27]

ÁBRAHÁM E, HOURTON-CABASSA C, ERDEI L, et al. Methods for determination of proline in plants[M]// SUNKAR R. Plant Stress Tolerance. Totowa: Humana Press, 2010: 317−331.
[28]

STEWART R R, BEWLEY J D. Lipid peroxidation associated with accelerated aging of soybean axes [J]. Plant Physiology, 1980, 65(2): 245−248.
[29] 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207−210.

ZHAO Shijie, XU Changcheng, ZOU Qi, et al. Improvement of determination method of malondialdehyde in plant tissues [J]. Plant Physiology Communications, 1994, 30(3): 207−210.
[30]

CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202.
[31]

CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J/OL]. BMC Bioinformatics, 2009, 10: 421[2025-07-30]. DOI: 10.1186/1471-2105-10-421.
[32]

KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Molecular Biology and Evolution, 2013, 30(4): 772−780.
[33]

SUYAMA M, TORRENTS D, BORK P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding Codon alignments[J/OL]. Nucleic Acids Research, 2006, 34(suppl 2): W609-W612[2025-07-30]. DOI: 10.1093/nar/gkl315.
[34]

MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530−1534.
[35]

TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022−3027.
[36]

DENG Yin’ai, YANG Peng, ZHANG Qianle, et al. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum[J/OL]. Cell Reports, 2024, 43(2): 113725[2025-07-30]. DOI: 10.1016/j.celrep.2024.113725.
[37]

SONG Aiping, SU Jiangshuo, WANG Haibin, et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated Chrysanthemum[J/OL]. Nature Communications, 2023, 14(1): 2021[2025-07-30]. DOI: 10.1038/s41467-023-37730-3.
[38]

SONG Chi, LIU Yifei, SONG Aiping, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits [J]. Molecular Plant, 2018, 11(12): 1482−1491.
[39]

WEN Xiaohui, LI Junzhuo, WANG Lili, et al. The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse Capitulum types[J/OL]. Horticulture Research, 2022, 9: uhab022[2025-07-30]. DOI: 10.1093/hr/uhab022.
[40]

SHEN Fei, QIN Yajuan, WANG Rui, et al. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae[J/OL]. Nature Communications, 2023, 14(1): 4334[2025-07-30]. DOI: 10.1038/s41467-023-40002-9.
[41]

BADOUIN H, GOUZY J, GRASSA C J, et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution [J]. Nature, 2017, 546(7656): 148−152.
[42]

FAN Wei, WANG Sen, WANG Hengchao, et al. The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae Palaeo-polyploidization history and plant inulin production [J]. Molecular Ecology Resources, 2022, 22(8): 3124−3140.
[43]

CHEN Hongyu, GUO Miaoxian, DONG Shuting, et al. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity[J/O]. Plant Communications, 2023, 4(3): 100516[2025-07-30]. DOI: 10.1016/j.xplc.2023.100516.
[44]

SHEN Qian, ZHANG Lida, LIAO Zhihua, et al. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis [J]. Molecular Plant, 2018, 11(6): 776−788.
[45]

MELTON A E, CHILD A W, BEARD R S, et al. A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands[J/OL]. G3, 2022, 12(7): jkac122[2025-07-30]. DOI: 10.1093/g3journal/jkac122.
[46]

ZHOU Yao, ZHANG Zhiyang, BAO Zhigui, et al. Graph pangenome captures missing heritability and empowers tomato breeding [J]. Nature, 2022, 606(7914): 527−534.
[47]

LAMESCH P, BERARDINI T Z, LI Donghui, et al. The Arabidopsis information resource (TAIR): improved gene annotation and new tools[J/OL]. Nucleic Acids Research, 2012, 40: D1202-D1210[2025-07-30]. DOI: 10.1093/nar/gkr1090.
[48]

TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) [J]. Science, 2006, 313(5793): 1596−1604.
[49]

JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm Phyla [J]. Nature, 2007, 449(7161): 463−467.
[50]

FILIAULT D L, BALLERINI E S, MANDÁKOVÁ T, et al. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history[J/OL]. eLife, 2018, 7: e36426[2025-07-30]. DOI: 10.7554/eLife.36426.
[51]

HUFFORD M B, SEETHARAM A S, WOODHOUSE M R, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[J]. Science, 2021, 373(6555): 655−662.
[52]

OUYANG Shu, ZHU Wei, HAMILTON J, et al. The TIGR rice genome annotation resource: improvements and new features[J/OL]. Nucleic Acids Research, 2007, 35: D883-D887[2025-07-30]. DOI: 10.1093/nar/gkl976.
[53]

CHEN Jinhui, HAO Zhaodong, GUANG Xuanmin, et al. Author correction: Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J/OL]. Nature Plants, 2019, 5(3): 328[2025-07-30]. DOI: 10.1038/s41477-018-0323-6.
[54]

CAREY S B, AKÖZBEK L, LOVELL J T, et al. ZW sex chromosome structure in Amborella trichopoda [J]. Nature Plants, 2024, 10(12): 1944−1954.
[55]

VEGA A, O’BRIEN J A, GUTIÉRREZ R A. Nitrate and hormonal signaling crosstalk for plant growth and development [J]. Current Opinion in Plant Biology, 2019, 52: 155−163.
[56] 马祥, 李中兴, 杨荣尘, 等. 盐胁迫对不同耐盐性燕麦糖类及内源激素含量变化的影响[J/OL]. 草业学报, 2025-09-11[2025-07-30]. http://kns.cnki.net/kcms/detail/62.1105.S.20250910.1258.004.html.

MA Xiang, LI Zhongxing, YANG Rongchen, et al. The effect of salt stress on the changes of sugar and endogenous hormone content in oats with different salt tolerance [J]. Acta Prataculturae Sinica, 2025-09-11[2025-07-30]. http://kns.cnki.net/kcms/detail/62.1105.S.20250910.1258.004.html.
[57] 李海洋, 李爱学, 王成, 等. 盐胁迫对苗期向日葵内源激素含量的影响[J]. 干旱地区农业研究, 2018, 36(6): 92−97.

LI Haiyang, LI Aixue, WANG Cheng, et al. Effects of salt stress on endogenous hormone contents in sunflower seedlings [J]. Agricultural Research in the Arid Areas, 2018, 36(6): 92−97.
[58] 张钰, 陈慧, 王改萍. 外源ABA对楸树幼苗NaCl胁迫的缓解效应及其生长生理响应特征[J]. 西北植物学报, 2023, 43(6): 996−1005.

ZHANG Yu, CHEN Hui, WANG Gaiping. Alleviating effects of exogenous ABA on Catalpa bungei seedlings under NaCl stress and growth physiological response characteristics [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(6): 996−1005.
[59] 沈惠娟, 李梅枝, 梁成喜. 盐胁迫下ABA对刺槐幼苗体内腐胺、脯氨酸和保护酶系统的影响[J]. 浙江林学院学报, 1992, 9(3): 57−63.

SHEN Huijuan, LI Meizhi, LIANG Chengxi. Effects of ABA on putrescine, proline and protective enzyme system in Robinia pseudoacacia seedlings under salt stress [J]. Journal of Zhejiang Forestry College, 1992, 9(3): 57−63.
[60] 马福钦, 王彦, 郑晓琳, 等. 盐胁迫下外源脱落酸对鹰嘴紫云英种子萌发及幼苗生理特性的影响[J]. 核农学报, 2025, 39(8): 1797−1806.

MA Fuqin, WANG Yan, ZHENG Xiaolin, et al. Effects of exogenous abscisic acid on seed germination and seedling physiological characteristics of Astragalus cicer seedlings under salt stress [J]. Journal of Nuclear Agricultural Sciences, 2025, 39(8): 1797−1806.
[61] 沈徐悦, 张浪, 陈蓉蓉, 等. 盐胁迫对望春玉兰幼苗形态和相关生理指标的影响[J]. 浙江农林大学学报, 2021, 38(2): 289−295.

SHEN Xuyue, ZHANG Lang, CHEN Rongrong, et al. Effects of salt stress on morphology and related physiological indices of Magnolia biondii seedlings [J]. Journal of Zhejiang A&F University, 2021, 38(2): 289−295.
[62] 王亚丽. 外源ABA对盐胁迫下八棱海棠苗木生长及生理特性的影响[J]. 山西林业科技, 2024, 53(2): 25−28.

WANG Yali. Effect of exogenous ABA on the growth and physiological characteristics of Malus robusta seedlings under salt stress [J]. Shanxi Forestry Science and Technology, 2024, 53(2): 25−28.
[63] 田戈, 南丽丽, 王利群, 等. 盐胁迫下外源ABA对红豆草幼苗生长与生理特性的影响[J]. 草业学报, 2025, 34(10): 95−106.

TIAN Ge, NAN Lili, WANG Liqun, et al. Effects of exogenous ABA on growth and physiological characteristics of Onobrychis cyri seedlings under salt stress [J]. Acta Prataculturae Sinica, 2025, 34(10): 95−106.
[64] 宁朋, 王菲, 肖雨, 等. 外源ABA与盐胁迫对银边吊兰生长及生理特性的影响[J]. 江西农业大学学报, 2021, 43(2): 287−295.

NING Peng, WANG Fei, XIAO Yu, et al. Effects of ABA and salt stress on the growth and physiological characteristics of Chlorophytum comosum var. variegatum [J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(2): 287−295.
[65]

ZHANG Jihong, LI Xiushan, HE Zhimin, et al. Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana [J]. Molecular Biology Reports, 2013, 40(3): 2633−2644.
[66] 王博雅. 拟南芥中NSOS1与HAB3基因调控逆境应答的分子机理研究[D]. 杨凌: 西北农林科技大学, 2014.

WANG Boya. Study of the Molecular Mechanisms of AtNSOS1 and AtHAB3 Genes Regulating Stress Response in Arabidopsis thaliana [D]. Yangling: Northwest agriculture and forestry university of science and technology, 2014.
[67] 孙宏涛. 天女木兰A类PP2C基因克隆及其在种子休眠解除中的功能验证[D]. 沈阳: 沈阳农业大学, 2022.

SUN Hongtao. Cloning of Group A PP2C Gene in Magnolia sieboldii and Its Functional Verification in the Release of Seed Dormancy [D]. Shenyang: Shenyang Agricultural University, 2022.
[68] 张恒阳. 盐芥PP2C基因应对非生物胁迫分子机制及功能研究[D]. 济南: 山东师范大学, 2024.

ZHANG Hengyang. Research on Molecular Mechanisms and Function of Eutrema salsugineum PP2C Gene in Response to Abiotic Stress [D]. Ji’nan: Shandong Normal University, 2024.