[1] 任飞虹, 白骅, 邱兆文, 等. 改善颗粒物污染的道路绿地植被屏障研究进展[J]. 生态学报, 2022, 42(13): 5177 − 5186.

REN Feihong, BAI Hua, QIU Zhaowen, et al. Research progress on roadside vegetation barriers for reducing particulate matter pollution [J]. Acta Ecologica Sinica, 2022, 42(13): 5177 − 5186.
[2] 陆海燕, 彭碧淼, 关超, 等. 7种校园道路绿化树种叶片形态与滞尘能力[J]. 热带农业科学, 2023, 43(11): 107 − 113.

LU Haiyang, PENG Bimiao, GUAN Chao, et al. Leaf morphology and dust retention capacity of seven greening tree species on the campus [J]. Chinese Journal of Tropical Agriculture, 2023, 43(11): 107 − 113.
[3] 李晓璐, 叶锦东, 章剑, 等. 乔木滞留大气颗粒物能力及其与叶表面微结构关系[J]. 中国城市林业, 2022, 20(3): 22 − 28, 120.

LI Xiaolu, YE Jindong, ZHANG Jian, et al. Atmospheric particle retention capacity of trees and its relationship with leaf surface microstructure [J]. Journal of Chinese Urban Forestry, 2022, 20(3): 22 − 28, 120.
[4]

FENG Yingying, HUANG Xiji, SUN Huizhen, et al. Framingham risk score modifies the effect of PM10 on heart rate variability [J]. Science of the Total Environment, 2015, 523: 146 − 151.
[5] 王彤, 张丹, 杨轶晗, 等. 长春市南湖公园5种常绿针叶树种滞留大气颗粒物能力研究[J]. 安徽农业科学, 2023, 51(9): 77 − 82.

WANG Tong, ZHANG Dan, YANG Yihan, et al. Study on atmospheric particulate matter retention capacity of five evergreen coniferous trees in Nanhu Park, Changchun [J]. Journal of Anhui Agricultural Sciences, 2023, 51(9): 77 − 82.
[6]

WANG Cuiping, HAO Lipeng, LIU Cong, et al. Associations between fine particulate matter constituents and daily cardiovascular mortality in Shanghai, China [J/OL]. Ecotoxicology and Environmental Safety, 2020, 191 : 110154[2024-05-25]. doi: 10.1016/j.ecoenv.2019.110154.
[7]

ZHU Jiyou, XU Chengyang. Intraspecific differences in plant functional traits are related to urban atmospheric particulate matter [J/OL]. BMC Plant Biology, 2021, 21 (1): 430[2024-05-25]. doi: 10.1186/s12870-021-03207-y.
[8]

KUMAR A, SINGH H, KUMARI G, et al. Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations [J/OL]. Environmental Pollution, 2022, 313 : 120191[2024-05-25]. doi: 10.1016/j.envpol.2022.120191.
[9]

SELMI W, WEBER C, RIVIERE E, et al. Air pollution removal by trees in public green spaces in Strasbourg City, France [J]. Urban Forestry & Urban Greening, 2016, 17: 192 − 201.
[10]

XU Lishuai, YAN Qian, LIN Yongchong, et al. Selective retention of particulate matter by nine plant species in central Shanxi Province, China [J]. Environmental Science and Pollution Research, 2021, 28: 35902 − 35910.
[11]

XU Lishuai, YAN Qian, HE Peng, et al. Combined effects of different leaf traits on foliage dust-retention capacity and stability [J]. Air Quality, Atmosphere and Health, 2022, 15: 1263 − 1274.
[12] 王琴, 冯晶红, 黄奕, 等. 武汉市 15 种阔叶乔木滞尘能力与叶表微形态特征[J]. 生态学报, 2020, 40(1): 213 − 222.

WANG Qin, FENG Jinghong, HUANG Yi, et al. Dust-retention capability and leaf surface micromorphology of 15 broad-leaved tree species in Wuhan [J]. Acta Ecologica Sinica, 2020, 40(1): 213 − 222.
[13] 王松, 康红梅, 王晋, 等. 山西太原常绿植物滞尘能力差异性及叶面微结构[J]. 北方园艺, 2021(14): 80 − 86.

WANG Song, KANG Hongmei, WANG Jin, et al. Dust catching property and leaf surface micro-structure of evergreen plants in Taiyuan, Shanxi [J]. Northern Horticulture, 2021(14): 80 − 86.
[14]

WEERAKKODY U, DOVER J W, MITCHELL P, et al. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves [J]. Urban Forestry & Urban Greening, 2018, 30: 98 − 107.
[15] 查燕, 马华升, 俞祥群, 等. 城市绿化植物对不同粒径大气颗粒物的吸附特征研究[J]. 环境污染与防治, 2020, 42(7): 807 − 811, 819.

ZHA Yan, MA Huasheng, YU Xiangqun, et al. The adsorbing characteristic of urban greening plant on depositing size-fractionated particles [J]. Environmental Pollution & Control, 2020, 42(7): 807 − 811, 819.
[16] 孙应都, 陈奇伯, 李艳梅, 等. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究[J]. 西南林业大学学报, 2019, 39(3): 78 − 85.

SUN Yingdu, CHEN Qibo, LI Yanmei, et al. Relationship between leaf structure and dust retention capacity of 6 greening tree species in Kunming [J]. Journal of Southwest Forestry University, 2019, 39(3): 78 − 85.
[17] 李耀华, 玉米提·哈力克, 木尼拉·阿不都木太力甫, 等. 城市园林树木叶面微结构特征对大气颗粒物滞留能力的影响[J]. 生态学报, 2022, 42(6): 2228 − 2236.

LI Yaohua, Umut Halik, Munila Abudumutailifu, et al. Effects of leaf microstructure characteristics of urban trees on atmospheric particulates retention capacity [J]. Acta Ecologica Sinica, 2022, 42(6): 2228 − 2236.
[18]

HE Chen, QIU Kaiyang, POTT R. Reduction of urban traffic-related particulate matter-leaf trait matters [J]. Environmental Science and Pollution Research, 2020, 27(6): 5825 − 5844.
[19]

DANG Ning, ZHANG Handan. SALAM M M A, et al. Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: seasonal changes [J/OL]. Environmental Pollution, 2022, 306 : 119472[2024-05-25]. doi: 10.1016/j.envpol.2022.119472.
[20]

SHAO Feng, WANG Lihua, SUN Fengbin, et al. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China [J]. Science of the Total Environment, 2019, 652: 939 − 951.
[21]

LI Xiaolu, ZHANG Tianran, SUN Fengbin, et al. The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou, China [J/OL]. Science of the Total Environment, 2021, 771 : 144812[2024-05-25]. doi: 10.1016/j.scitotenv.2020.144812.
[22] 贺丹, 李海涛, 原江琴, 等. 郑州市7种园林植物滞尘能力与叶片生理及光合响应[J]. 浙江农林大学学报, 2023, 40(6): 1205 − 1214.

HE Dan, LI Haitao, YUAN Jiangqin, et al. Dust retention capacity and leaf physiology and photosynthesis response of 7 garden plants in Zhengzhou City [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1205 − 1214.
[23] 李朝梅, 王军梦, 王腾飞, 等. 郑州市常见公园绿化植物的滞尘能力及叶片性状分析[J]. 西北林学院学报, 2021, 36(2): 123 − 129.

LI Chaomei, WANG Junmeng, WANG Tengfei, et al. Dust retention capability and leaf traits of common park greening plants species in Zhengzhou City [J]. Journal of Northwest Forestry University, 2021, 36(2): 123 − 129.
[24] 张翠, 马瑞, 谭立佳, 等. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响[J]. 甘肃农业大学学报, 2023, 58(4): 192 − 200, 211.

ZHANG Cui, MA Rui, TAN Lijia, et al. Influence of leaf surface microstructure of ten commonly-used landscaping tree species on dust retention in Lanzhou City [J]. Journal of Gansu Agricultural University, 2023, 58(4): 192 − 200, 211.
[25] 张维康, 王兵, 牛香. 不同树种叶片微观结构对其滞纳空气颗粒物功能的影响[J]. 生态学杂志, 2017, 36(9): 2507 − 2513.

ZHANG Weikang, WANG Bing, NIU Xiang. The leaf microstructure of different trees and impact on air particles-capturing ability [J]. Chinese Journal of Ecology, 2017, 36(9): 2507 − 2513.
[26] 张少伟, 岳晨, 詹振枫, 等. 4种柳树叶片表面易去除与难去除颗粒物滞纳特征[J]. 林业科学, 2020, 56(6): 26 − 34.

ZHANG Shaowei, YUE Chen, ZHAN Zhenfeng, et al. Characteristics of easy and different removable particulate matter retained by the leaves of 4 willow species [J]. Scientia Slivae Sinicae, 2020, 56(6): 26 − 34.
[27]

DZIERZANOWSKI K, POPEK P, GAWRONSKA H, et al. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species [J]. International Journal of Phytoremediation, 2011, 13(10): 1037 − 1046.
[28] 魏文俊. 城市绿化树种滞尘机制与叶片功能性状的响应研究[D]. 北京: 中国林业科学研究院, 2021.

WEI Wenjun. Mechanisms of Particulate Matters Capture Capacity and Response of Leaf Functional Traits for Urban Tree Species [D]. Beijing: Chinese Academy of Forestry, 2021.
[29] 衣妍. 城市生态系统典型植被对近地表颗粒物截留过程研究[D]. 长春: 吉林建筑大学, 2022.

YI Yan. Study on the Interception Process of Near Surface Particulate Matter by Typical Vegetation in Urban Ecosystems [D]. Changchun: Jilin Jianzhu University, 2022.
[30] 贺丹, 汪安印, 李紫萱, 等. 郑州市常绿树种滞尘能力与叶片生理结构的响应[J]. 福建农业学报, 2022, 37(2): 203 − 212.

HE Dan, WANG Anyin, LI Zixuan, et al. Dust retention and physiological responses of evergreen tree leaves in Zhengzhou City [J]. Fujian Journal of Agricultural Sciences, 2022, 37(2): 203 − 212.
[31] 魏文俊, 王兵, 牛香. 叶片微观结构变化对其颗粒物滞纳能力的影响[J]. 环境科学, 2020, 41(7): 3136 − 3147.

WEI Wenjun, WANG Bing, NIU Xiang. Impacts of leaf surface micromorphology variation on the ability to capture particulate matter [J]. Environmental Science, 2020, 41(7): 3136 − 3147.
[32]

SGRIGNA G, BALDACCHINI C, DREVECK S, et al. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment [J/OL]. Science of the Total Environment, 2020, 718 : 137310[2024-05-25]. doi: 10.1016/j.scitotenv.2020.137310.
[33]

JIN E J, YOON J H, BAE E J, et al. Particulate matter removal ability of ten evergreen trees planted in Korea urban greening [J]. Forests, 2021, 12 (4): 438[2024-05-25]. doi. org/10.3390/f12040438.
[34] 赖寒健, 葛照硕, 李小兵, 等. 微观结构和蜡质对植物叶表面疏水性能的影响[J]. 林业科学, 2017, 53(4): 74 − 82.

LAI Hanjian, GE Zhaoshuo, LI Xiaobing, et al. Effect of microstructure and wax on the hydrophobic properties of plant leaves [J]. Scientia Silvae Sinicae, 2017, 53(4): 74 − 82.
[35]

ZHANG Xuyi, LYU Junyao, ZENG Yuxiao, et al. Individual effects of trichomes and leaf morphology on PM2.5 dry deposition velocity: a variable-control approach using species from the same family or genus [J/OL]. Environmental Pollution, 2021, 272 : 116385[2024-05-25]. doi: 10.1016/j.envpol.2020.116385.