[1] WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics [J]. Annual Review of Genetics, 2018, 52: 421 − 444.
[2] 张健. 中国重要农作物生物育种产业化应用的展望[J]. 中国农业科技导报, 2022, 24(12): 15 − 24.

ZHANG Jian. Prospects for commercialization of biotech breeding technology of important crops in China [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 15 − 24.
[3] 何中虎, 夏先春, 陈新民, 等. 中国小麦育种进展与展望[J]. 作物学报, 2011, 37(2): 202 − 215.

HE Zhonghu, XIA Xianchun, CHEN Xinmin, et al. Progress of wheat breeding in China and the future perspective [J]. Acta Agronomica Sinica, 2011, 37(2): 202 − 215.
[4] 贺志勇. 生物育种对国民经济与粮食安全的贡献分析[J]. 分子植物育种, 2024, 22(13): 4505 − 4510.

HE Zhiyong. The contribution analysis of biobreeding to national economy and food security [J]. Molecular Plant Breeding, 2024, 22(13): 4505 − 4510.
[5] 黄耀辉, 焦悦, 吴小智, 等. 生物育种对种业科技创新的影响[J]. 南京农业大学学报, 2022, 45(3): 413 − 421.

HUANG Yaohui, JIAO Yue, WU Xiaozhi, et al. The influence of biological breeding on the science and technology innovation of seed industry [J]. Journal of Nanjing Agricultural University, 2022, 45(3): 413 − 421.
[6] 邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003, 21(2): 143 − 148.

QIU Junping, DUAN Yufeng, CHEN Jingquan. The retrospect and prospect on bibliometrics in China [J]. Studies in Science of Science, 2003, 21(2): 143 − 148.
[7] 王瑞. 基于文献计量分析的小麦科研实力国际比较研究[D]. 合肥: 安徽农业大学, 2017.

WANG Rui. International Comparison of Wheat Research Level Based on Bibliometric Analysis [D]. Hefei: Anhui Agricultural University, 2017.
[8]

GIRALDO P, BENAVENTE E, MANZANO-AGUGLIARO F, et al. Worldwide research trends on wheat and barley: a bibliometric comparative analysis [J/OL]. Agronomy, 2019, 9 (7): 352[2024-07-10]. doi:10.3390/agronomy9070352.
[9] 孟静, 唐研, 徐淑良, 等. 基于文献计量的国内外小麦遗传育种研究进展[J]. 江苏农业科学, 2020, 48(3): 64 − 72.

MENG Jing, TANG Yan, XU Shuliang, et al. Progress of genetic breeding research in wheat at home and abroad based on bibliometrics [J]. Jiangsu Agricultural Sciences, 2020, 48(3): 64 − 72.
[10]

International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome [J/OL]. Science, 2018, 361 (6403): eaar7191[2024-07-10]. doi: 10.1126/science.aar7191.
[11] 李洪杰, 陈明, 李少雅, 等. 小麦生物育种: 进展、机遇和挑战[J]. 中国基础科学, 2022, 24(4): 1 − 8, 28.

LI Hongjie, CHEN Ming, LI Shaoya, et al. Wheat biotech-breeding: progresses, opportunities and challenges [J]. China Basic Science, 2022, 24(4): 1 − 8, 28.
[12] 梁爽, 刘小平. 基于文本挖掘的科技文献主题演化研究进展[J]. 图书情报工作, 2022, 66(13): 138 − 149.

LIANG Shuang, LIU Xiaoping. Research progress on topic evolution of scientific and technical literatures based on text mining [J]. Library and Information Service, 2022, 66(13): 138 − 149.
[13]

ZHANG Yujie, YU Chaoran, ZHAO Feng, et al. Landscape of artificial intelligence in breast cancer (2000−2021): a bibliometric analysis [J/OL]. Frontiers in Bioscience-Landmark, 2022, 27 (8): 224[2024-07-10]. doi: 10.31083/j.fbl2708224.
[14]

ZHANG Zeyu, WANG Zhiming, HUANG Yun. A bibliometric analysis of 8 276 publications during the past 25 years on cholangiocarcinoma by machine learning [J/OL]. Frontiers in Oncology, 2021, 11 : 687904[2024-07-10]. doi: 10.3389/fonc.2021.687904.
[15]

SINGH K, SAINI D K, SARIPALLI G, et al. WheatQTLdb V2.0: A supplement to the database for wheat QTL [J/OL]. Molecular Breeding, 2022, 42 (10): 56[2024-07-10]. doi: 10.1007/s11032-022-01329-1.
[16]

MA Shengwei, WANG Meng, WU Jianhui, et al. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat [J]. Molecular Plant, 2021, 14(12): 1965 − 1968.
[17]

SONG Long, LIU Jie, CAO Beilu, et al. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat [J]. Nature, 2023, 617(7959): 118 − 124.
[18]

GAO Jie, HU Xin, GAO Chunyan, et al. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat [J]. Plant Biotechnology Journal, 2023, 21(10): 1966 − 1977.
[19]

ZHANG Zhen, QU Yunfeng, MA Feifei, et al. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat [J]. New Phytologist, 2024, 243(5): 1758 − 1775.
[20]

ZHU Anting, LIU Mengmeng, TIAN Zhitao, et al. Chemical-tag-based semi-annotated metabolomics facilitates gene identification and specialized metabolic pathway elucidation in wheat [J]. The Plant Cell, 2024, 36(3): 540 − 558.
[21]

XIAO Qinlin, BAI Xiulin, ZHANG Chu, et al. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: a review [J]. Journal of Advanced Research, 2022, 35: 215 − 230.
[22]

SINGH B, KUMAR S, ELANGOVAN A, et al. Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches [J/OL]. Frontiers in Plant Science, 2023, 14 : 1214801[2024-07-10]. doi: 10.3389/fpls.2023.1214801.
[23]

PRASAD P, SAVADI S, BHARDWAJ S C, et al. The progress of leaf rust research in wheat [J]. Fungal Biology, 2020, 124(6): 537 − 550.
[24]

LANGRIDGE P, REYNOLDS M. Breeding for drought and heat tolerance in wheat [J]. Theoretical and Applied Genetics, 2021, 134(6): 1753 − 1769.
[25]

LI Zihan, ZHONG Fan, GUO Jianrong, et al. Improving wheat salt tolerance for saline agriculture [J]. Journal of Agricultural and Food Chemistry, 2022, 70(48): 14989 − 15006.