[1] 张超, 仇广乐, 冯新斌. 汞矿山环境汞污染研究进展[J]. 生态学杂志, 2011, 30(5): 865 − 873.

ZHANG Chao, QIU Guangle, FENG Xinbin. Environmental mercury pollution in mercury mining areas: a review [J]. Chinese Journal of Ecology, 2011, 30(5): 865 − 873.
[2] 胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 2015, 24(5): 879 − 885.

HU Guocheng, ZHANG Lijuan, QI Jianying, et al. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan mercury mine area, Guizhou Province [J]. Ecology and Environmental Sciences, 2015, 24(5): 879 − 885.
[3]

QIU Guangle, FENG Xinbin, WANG Shaofeng, et al. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China [J]. Environmental Pollution, 2006, 142(3): 549 − 558.
[4] 许蕾. 化学淋洗法修复重金属Hg污染土壤的应用实例研究[J]. 皮革制作与环保科技, 2022, 3(11): 88 − 90.

XU Lei. Case study of remediation of contaminated soil with heavy metal Hg by chemical washing technology [J]. Leather Manufacture and Environmental Technology, 2022, 3(11): 88 − 90.
[5] 余志, 赵婷, 黄代宽, 等. 低温热解技术在中试条件下修复汞污染土壤的研究[J]. 环保科技, 2017, 23(4): 1 − 4.

YU Zhi, ZHAO Ting, HUANG Daikuan, et al. A study on a pilot-scale remediation employing low-temperature pyrolysis technology for mercury contaminated soil [J]. Environmental Protection and Technology, 2017, 23(4): 1 − 4.
[6] 马跃峰, 武晓燕, 薛向明. 汞污染土壤修复技术的发展现状与筛选流程研究[J]. 环境科学与管理, 2015, 40(12): 107 − 111.

MA Yuefeng, WU Xiaoyan, XUE Xiangming. Present situation and screening strategies of remediation technology for mercury-contaminated soil [J]. Environmental Science and Management, 2015, 40(12): 107 − 111.
[7] 张建云, 高才慧, 朱晖, 等. 生物质炭对土壤中重金属形态和迁移性的影响及作用机制[J]. 浙江农林大学学报, 2017, 34(3): 543 − 551.

ZHANG Jianyun, GAO Caihui, ZHU Hui, et al. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil [J]. Journal of Zhejiang A&F University, 2017, 34(3): 543 − 551.
[8]

MAN Yi, WANG Bo, WANG Jianxu, et al. Use of biochar to reduce mercury accumulation in Oryza sativa L: a trial for sustainable management of historically polluted farmlands [J/OL]. Environment International, 2021, 153: 106527[2023-12-06]. doi:10.1016/j.envint.2021.106527.
[9] 迟杰, 邢海文, 张海彤, 等. 不同粒径生物炭和微塑料共存对菲吸附的影响[J]. 农业环境科学学报, 2022, 41(3): 616 − 621.

CHI Jie, XING Haiwen, ZHANG Haitong, et al. Effects of the coexistence of biochar and microplastic in different particle sizes on phenanthrene sorption [J]. Journal of Agro-Environment Science, 2022, 41(3): 616 − 621.
[10]

XIAO Jiang, HU Rui, CHEN Gangcai. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) [J/OL]. Journal of Hazardous Materials, 2019, 387: 121980[2023-12-06]. doi:10.1016/j.jhazmat.2019.121980.
[11]

XU Xiaoyun, ZHENG Yulin, GAO Bin, et al. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red [J]. Chemical Engineering Journal, 2019, 368: 564 − 572.
[12]

HU Hualing, GAO Yiman, TAN Wenbing, et al. Effects of dissolved organic matter on mercury speciation in rice rhizosphere amended with sulfur-rich biochar [J/OL]. Soil & Environmental Health, 2023, 1(2): 100022[2023-12-06]. doi: 10.1016/j.seh.2023.100022.
[13] 王兴栋, 张斌, 余广炜, 等. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报, 2016, 67(11): 4808 − 4816.

WANG Xingdong, ZHANG Bin, YU Guangwei, et al. Preparation of biochar with different particle sized sewage sludge and its characteristics [J]. CIESC Journal, 2016, 67(11): 4808 − 4816.
[14] 何天容, 冯新斌, 戴前进, 等. 萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞[J]. 地球与环境, 2004, 32(2): 83 − 86.

HE Tianrong, FENG Xinbin, DAI Qianjin, et al. Determination of methylmercury in sediments and soils by GC-CVAFS after aqueous phase ethylation [J]. Earth and Environment, 2004, 32(2): 83 − 86.
[15] 赵首萍, 张棋, 肖文丹, 等. 不同提取剂对土壤有效态Hg提取的效果浅析[J]. 浙江农业科学, 2020, 61(10): 2176 − 2181.

ZHAO Shouping, ZHANG Qi, XIAO Wendan, et al. Comparison of extraction efficiency of bioavailable Hg from soil by different extraction agents [J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(10): 2176 − 2181.
[16] 仇广乐, 冯新斌, 梁琏, 等. 溶剂萃取-水相乙基化衍生GC-CVAFS联用测定苔藓样品中的甲基汞[J]. 分析测试学报, 2005, 24(1): 29 − 32.

QIU Guangle, FENG Xinbin, LIANG Lian, et al. Determination of methylmercury in moss by ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry with solvent extraction [J]. Journal of Instrumental Analysis, 2005, 24(1): 29 − 32.
[17]

WANG Zhenyu, LIU Guocheng, ZHENG Hao, et al. Investigating the mechanisms of biochar's removal of lead from solution [J]. Bioresurce Technology, 2015, 177: 308 − 317.
[18]

ZHOU Qiwen, LIAO Bohan, LIN Li’na, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites [J]. Science of the Total Environment, 2018, 615: 115 − 122.
[19] 陈明. 生物炭纳米颗粒协同土壤中典型污染物的迁移行为[D]. 上海: 上海交通大学, 2019.

CHEN Ming. Co-Transport Behaviors of Biochar Nanoparticles and Contaminants in Soils [D]. Shanghai: Shanghai Jiaotong University, 2019.
[20] 陈剑, 王章玮, 张晓山, 等. 开顶式气室原位研究水稻汞富集对大气汞浓度升高的响应[J]. 环境科学, 2015, 36(8): 2997 − 3003.

CHEN Jian, WANG Zhangwei, ZHANG Xiaoshan, et al. Open-top chamber for in situ research on response of mercury enrichment in rice to the rising gaseous elemental mercury in the atmosphere [J]. Environmental Science, 2015, 36(8): 2997 − 3003.
[21]

MENDOZA-CÓZATL D G, JOBE T O, HAUSER F, et al. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic [J]. Current Opinion in Plant Biology, 2011, 14(5): 554 − 562.
[22]

DAGO A, GONZÁLEZ I, CRISTINA A, et al. Evaluation of mercury stress in plants from the Almadén mining district by analysis of phytochelatins and their Hg complexes [J]. Environmental Science &Technology, 2014, 48(11): 6256 − 6263.
[23] 张志渊, 胡文俊, 卢畅, 等. 不同生育期水稻对甲基汞的蓄积[J]. 福建农业学报, 2021, 36(9): 1087 − 1091.

ZHANG Zhiyuan, HU Wenjun, LU Chang, et al. Methylmercury accumulation in rice at different growth stages [J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1087 − 1091.
[24]

LIU Zhen’gang, ZHANG Fushen. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass [J]. Journal of Hazardous Materials, 2009, 167(1/3): 933 − 939.
[25]

NAGHDI M, TAHERAN M, BRAR S K, et al. A green method for production of nanobiochar by ball milling- optimization and characterization [J]. Journal of Cleaner Production, 2017, 164: 1394 − 1405.
[26] 刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015, 35(11): 3679 − 3687.

LIU Jingjing, YANG Xing, LU Kouping, et al. Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil [J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3679 − 3687.
[27] 梁传斌, 李建国, 沈枫, 等. 移栽密度和施用生物炭对水稻产量的影响[J]. 中国土壤与肥料, 2021(2): 240 − 247.

LIANG Chuanbin, LI Jianguo, SHEN Feng, et al. Effect of transplanting density and biochar application on the yield of rice [J]. Soil and Fertilizer Sciences in China, 2021(2): 240 − 247.
[28]

MARVIN M, WINDHAMS L, AGEE J L, et al. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA [J]. Science of the Total Environment, 2014, 484: 288 − 299.
[29]

AULAKH M S, WASSMANN R, BUENO C, et al. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L. ) cultivars [J]. Plant Biology, 2001, 3(2): 139 − 148.
[30]

CHEN Zheng, WANG Yuanpeng, XIA Dong, et al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition [J]. Journal of Hazardous Materials, 2016, 311: 20 − 29.
[31]

QIAO Jiangtao, LI Xiaomin, HU Min, et al. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil [J]. Environmental Science &Technology, 2018, 52(1): 61 − 70.
[32]

HUANG Limin, YU Guangwei, ZOU Fuzhen, et al. Shift of soil bacterial community and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil by inorganic-organic mixed amendments: a field study [J]. Applied Soil Ecology, 2018, 130: 104 − 119.
[33]

LI Yunyun, ZHAO Jiating, ZHONG Huan, et al. Understanding enhanced microbial MeHg production in mining-contaminated paddy soils under sulfate amendment: changes in Hg mobility or microbial methylators [J]. Environmental Science &Technology, 2019, 53: 1844 − 1852.
[34]

HU Hualing, XI Beidou, TAN Wenbing. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice [J/OL]. Environmental Pollution, 2021, 286: 117290[2023-12-06]. doi:10.1016/j.envpol.2021.117290.